• Title/Summary/Keyword: Construction disaster

Search Result 1,511, Processing Time 0.03 seconds

A Study on Expansion and Strength Characteristics of Material for Emergency Restoration in Ground Cavity (지반공동 긴급복구 재료의 팽창 및 강도특성에 관한 연구)

  • Han, Jin-Gyu;Ryu, Yong-Sun;Kim, Dongwook;Park, Jeong-Jun;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • In this study, the expansion and compressive strength tests of emergency restoration material were carried out to restore cavity causing ground subsidence. The expansion and compressive strength characteristics according to component ratio of main material - hardener and mix proportion of blowing agent - accelerator were analyzed based on the test results. As a result of the relationship of curing time - expansion ratio analyses, it confirmed that expansion ratio decreased with reduced curing time regardless of mix proportion of blowing agent - accelerator in main material, if component ratio of hardener increased. This means that component ratio of the main material - hardener had greatly affected the expansion ratio. The compressive strength characteristics of emergency restoration material confirmed that strength was affected by mix proportion of blowing agent - accelerator. Therefore, it is necessary to apply reasonable component ratio and mix proportion to consider the required injection time, expansion ratio and strength of restoration material, when emergency restoration in ground cavity is required.

Vertical Accuracy Assessment of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea (한국에서의 SRTM(Ver 3.0)과 ASTER(Ver 2) 전 세계 수치표고모델 정확도 분석)

  • Park, Junku;Kim, Jungsub;Lee, Giha;Yang, Jae E.
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.120-128
    • /
    • 2017
  • The aim of this study is to analyze the accuracy of SRTM Ver 3.0 and ASTER GDEM Ver 2 over Korea. To enable this, accuracy analysis was performed by using precise DEM which was made with multiple aerial image matching and national base map benchmark. The result of this study identified both SRTM and ASTER have different features. The height of the SRTM was found to be higher (3.8 m on average) at lower elevation and lower (8.4 m on average) at higher elevation. In contrast, the ASTER was found to be lower than the actual height at both lower and higher elevation (2.92 m, 4.51 m on average). The cause of this height bias according to the elevation is due to the differences in data acquisition and processing methods of DEM. It was identified however that both SRTM and ASTER were within allowable limits of error. In addition, RMSE of the SRTM was smaller than the ASTER in comparison to benchmark, and also the bias trend both at higher and lower terrain were similar to the precise DEM which was made with multiple aerial image matching. Therefore, the reliability of SRTM can be considered to be higher.

Analysis the Relationship between Precipitation and Construction Disaster (강수특성과 건설 산업 재해와의 연관성 분석)

  • Jeon, Ha-Cheol;Kim, Gwang-Seob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.459-459
    • /
    • 2012
  • 본 연구에서는 우리나라의 건설현장에서 발생하는 안전사고 발생 특성과 강수특성 변화의 연관성을 분석하였다. 대상기간 2000년부터 2010년까지 지역별 건설 산업현장에서의 사고발생 건수(한국산업안전보건공단) 자료와 같은 시기 지역별 강수량 자료(기상청 지상관측지점)를 사용하여 강수량의 거동과 건설현장 사고발생 건수의 거동 사이의 상관성을 분석하였다. 건설현장 사고사례의 사고형태 중 부상자와 사망자 정보를 사용하였으며 지역의 구분은 특별시, 광역시 및 도 단위로 구분하여 분석하였다. 분석결과 전반적으로 연간 강수량의 증가 추세와 유사하게 전체 건설현장 안전사고의 발생건수가 증가하는 추세를 보이며, 지역별로 강수량의 증감 거동과 유사한 사고발생의 빈도의 증감거동을 보였다. 우리나라의 평균 월강수량과 월별 건설 안전사고 발생건수는 0.8의 선형상관성을 가지며 지역별 분석에서는 섬지역인 제주도가 가장 높은 상관계수 0.9를 나타냈고, 서울특별시 0.7, 대구광역시 0.7, 광주광역시 0.7, 부산광역시 0.5, 인천광역시 0.5, 대전광역시 0.4의 상관관계 순으로 나타났다. 강수변화에 따른 지역, 계절, 월별 강수-건설재해 상관성을 분석 제시하였다. 장마철인 7~8월에는 봄철인 3월~5월에 비해 강수량의 증가뿐만 아니라 21.16%의 사고 발생건수 증가가 나타났으며 우리나라의 강수특성 중 기후변화로 인하여 태풍의 영향이 많았던 시기의 사고발생의 특성을 정량적으로 분석하였다. 특히 2002년 태풍 '루사'와 2003년 태풍 '매미' 발생 시 산업현장의 재해 발생이 많이 있었던 것으로 조사 되었는데, 그 이유로는 산업현장에 태풍의 영향으로 감전사고 발생률이 2배가량 증가하며, 구조물과 사면이 무너져 내리는 등 사고가 빈번히 발생하면서 재해발생률이 더 증가하였다. 이처럼 기후변화에 따른 강수특성 변화로 건설 산업현장은 사고의 위험에 더욱 노출되고 있으므로 이에 대한 지역적 특성 분석과 대책 수립이 요구된다.

  • PDF

A Study on Urban Flood Vulnerability Assessment Considering Social Impact (사회적 평가 지표를 반영한 도시 홍수취약성 평가)

  • Lee, Gyu Min;Choi, Jin Won;Jun, Kyung Soo
    • Land and Housing Review
    • /
    • v.11 no.1
    • /
    • pp.109-116
    • /
    • 2020
  • This study aims to establish an approach to assess urban flood vulnerability by identifying social characteristics such as the road transportation and the vulnerable groups. Assessment procedures comprise three steps as: (1) composing the assessment criteria to reflect the urban characteristics; (2) calculating the weight; and (3) evaluating the vulnerability. The criteria were adopted by Delphi survey technique. Four criteria as land cover, residents, vulnerable areas, and disaster response were adopted in the current study. To determine the weight set of criteria, subjective and objective methods were combined. The weight set was determined using the combined method which reflects the Delphi method and Entropy analysis. In the process of data-based construction, GIS tools wwere used to extract administrative unit materials such as land cover, road status, and slope. Data on population and other social criteria were collected through the National Statistical Office and the Seoul Metropolitan statistical data. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) technique, which uses materials from cell units in order to rank the closest distance to the best case and the farthest distance from the worst case by calculating the distances to the area of assessment, was applied to assess. The study area was the Dorimcheon basin, a flood special treatment area of Seoul city. The results from the current study indicates that the established urban flood vulnerability assessment approach is able to predict the inherent vulnerable factors in urban regions and to propose the area of priority control.

A Study on Drainage Capability of Large Capacity Outlet and Spillway of Dams in Korea (한국댐의 대용량 배수시설 및 Spillway 배수능력에 관한 조사연구)

  • 이원환
    • Water for future
    • /
    • v.11 no.2
    • /
    • pp.43-53
    • /
    • 1978
  • Synopsis: This study has systemized the results of construction and classification with 656 large dams in Korea which were defined in ICOLD provision. Especially, checking up the drainage capability of large capacity outlets and its of spillway, this paper suggests the planning of outflow discharge with large capacity outlets and spillway in future. The results of this study are following as; 1. The classification by purposes in Korea shows that irrigation dams are 94% in rate(607 dams), jydropower and multipurpose dams are 2% (14 dams), municipal and industrial water supply dams are 4% (26 dams). 2. In design of proposed outflow discharge, spillways of irrigation dams were selected outflow discharge on 100 years return period, those of municipal and industrial water supply dmas 200 years and those of hydropower and multipurpose dams 500 years or 1000 years. 3. Emergency spillway should be considered in the fields of disaster prevention engineering and the rank of return periods for the emergency proposed out flow discharge was suggested. 4. Some of problems are suggested for this subject in future.

  • PDF

Remote Sensing of GPS Precipitable Water Vapor during 2014 Heavy Snowfall in Gangwon Province (2014년 강원 폭설동안 GPS 가강수량 탐측)

  • JinYong, Nam;DongSeob, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.305-316
    • /
    • 2015
  • The GPS signal delays in troposphere, which are along the signal path between a transmitting satellite and GPS permanent station, can be used to retrieve the precipitable water vapor. The GPS remote sensing technique of atmospheric water vapor is capable of monitoring typhoon and detecting long term water vapor for tracking of earth’s climate change. In this study, we analyzed GPS precipitable water vapor variations during the heavy snowstorm event occurred in the Yeongdong area, 2014. The results show that the snowfall event were occurring after the GPS precipitable water vapor were increased, the maximum fresh snow depth was recorded after the maximum GPS precipitable water vapor was generated, in Kangneug and Wuljin, respectively. Also, we analyzed that the closely correlation among the GPS precipitable water vapor, the K-index and total index which was acquired by the upper air observation system during this snowstorm event was revealed.

A Presentation on the Manual Hydraulic Calculation Method of the Loop Type Fire Sprinkler System (Loop형 스프링클러 설비의 수리계산 방법에 대한 제시)

  • Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • There are three kinds of design method of the fire sprinkler systems. Grid type is connected all branch as a trapezoid. Loop type is connected cross-mains like circle. The last one is a tree type most commonly used. Grid type needs computer program to calculate the friction loss and flow rate apart from very simple form. In loop type, manual calculation is possible. Design engineer can draw up and calculate the demands without computer program. Because water supplies two direction in loop type, friction loss is smaller than tree type. Water distribution in operation area is uniform because of the small differences of sprinklers discharge pressure. Loop type is superior to tree type in respect of total pressure and flow rate. Using the small diameter pipe, the labor and construction cost will be decreased in the end. Loop type sprinkler design is rarely laid out because design engineers don't know the method. This paper is intended to inform that the loop type is better than the tree type in performance and economic point of view. And also this paper intend to use the loop type easily and widely.

Numerical Study on the Effect of Steel Pipe Specification on Pile Behaviour (강관말뚝의 제원이 말뚝거동에 미치는 영향에 관한 수치해석 연구)

  • Park, Jeong-Jun;Lee, Kwang-Wu;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.37-44
    • /
    • 2017
  • In this study, three dimensional numerical analyses were carried out to predict axial (pullout and compressive) and lateral behavior of rock-socketed steel pipe pile varying diameter, wall thickness, and length. As a result of the pile pullout analyses, it was confirmed that the pullout displacement was inversely proportional to the pile diameter for given pile length, thickness, pullout load. Load-settlement relationship of the compressive pile analyses revealed that the effect of pile thickness on pile resistance was more significant than that of pile diameter. In addition, laterally loaded pile analyses showed that pile lateral resistance is influenced above all else by pile diameter. This study showed that it is necessary to conduct numerical analyses to identify the effects of pile diameter, wall thickness, and pile length on the steel pipe pile behavior as a preliminary pile design under specified loading conditions.

Utilization Plan Research of High Resolution Images for Efficient River Zone Management (효율적 하천구역관리를 위한 고해상 영상의 활용 방안 연구)

  • Park, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Yun-Won;Jo, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • The river management in Korea had been focused on line based 2D spatial data for the developing river management application system. In this study, the polygon based 3D spatial data such as aerial photos and satellite images were selected and used through comparing their resolution levels for the river environment management. In addition, 1m detailed DEM (Digital Elevation Model) was constructed to implement the real topography information around river so that the damage area scale could be extracted for flood disaster. Also, the social environment thematic maps such as a cadastral map or land cover map could be used to verify the real damage area scale by overlay analysis on aerial photos or satellite images. The construction of these spatial data makes possible to present the real surface information and extract quantitative analysis to support the scientific decision making for establishing the river management policy. For the further study, the lidar surveying data will be considered as the very useful data by offering the real height information of riverbed as the depth of river so that flood simulation can give more reality.

Development of Soil Organic Carbon Storage Estimation Model Using Soil Characteristics (토양 특성을 이용한 토양유기탄소저장량 산정 모형 개발)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul;Jung, Younghun;Lim, Kyoung-Jae;Yang, Jae E;Jang, Won Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Carbon dioxide is one of the major driving forces causing climate changes, and many countries have been trying to reduce carbon dioxide emissions from various sources. Soil stores more carbon dioxide(two to three times) amounts than atmosphere indicating that soil organic carbon emission management are a pivotal issue. In this study, we developed a Soil Organic Carbon(SOC) storage estimation model to predict SOC storage amounts in soils. Also, SOC storage values were assessed based on the carbon emission price provided from Republic Of Korea(ROK). Here, the SOC model calculated the soil hydraulic properties based on the soil physical and chemical information. Base on the calculated the soil hydraulic properties and the soil physical chemical information, SOC storage amounts were estimated. In validation, the estimated SOC storage amounts were 486,696 tons($3.526kg/m^2$) in Jindo-gun and shown similarly compared to the previous literature review. These results supported the robustness of our SOC model in estimating SOC storage amounts. The total SOC storage amount in ROK was 305 Mt, and the SOC amount at Gyeongsangbuk-do were relatively higher than other regions. But the SOC storage amount(per unit) was highest in Jeju island indicating that volcanic ashes might influence on the relatively higher SOC amount. Based on these results, the SOC storage value was shown as 8.4 trillion won in ROK. Even though our SOC model was not fully validated due to lacks of measured SOC data, our approach can be useful for policy-makers in reducing soil organic carbon emission from soils against climate changes.