• Title/Summary/Keyword: Construction Waste

Search Result 1,502, Processing Time 0.023 seconds

Use of Recycled Brick Masonry Aggregate and Recycled Brick Masonry Aggregate Concrete in Sustainable Construction

  • Schwerin, Dallas E.;Cavalline, Tara L.;Weggel, David C.
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.1
    • /
    • pp.28-34
    • /
    • 2013
  • Use of recycled aggregates in portland cement concrete (PCC) construction can offer benefits associated with both economy and sustainability. Testing performed to date indicates that recycled brick masonry aggregate (RBMA) can be used as a 100% replacement for conventional coarse aggregate in concrete that exhibits acceptable mechanical properties for use in structural and pavement elements, including satisfactory performance in some durability tests. Recycled brick masonry aggregate concrete (RBMAC) is currently not used in any type of construction in the United States. However, use of RBMAC could become a viable construction strategy as sustainable building practices become the norm. This paper explores the feasibility of use of RBMAC in several types of sustainable construction initiatives, based upon the findings of previous work with RBMAC that incorporates RBMA produced from construction and demolition waste from a case study site. A summary of material properties of RBMAC that will be useful to construction professionals are presented, along with a discussion of advantages and impediments to use. Several quality assurance and quality control techniques that could be incorporated into specifications are identified.

Heating Transferring Charcteristics of Cement Mortar Block with Waste CNT and Conduction Activator (폐CNT와 전도촉진재를 혼입한 시멘트 모르타르 블록의 발열 전도 특성)

  • Koo, Hounchul;Kim, Woon-Hak;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.176-183
    • /
    • 2022
  • High-purity waste CNTs were mixed into cement mortar to manufacture heat-generating concrete that can use low voltage power, and carbon fiber and waste cathode materials were also used improve the conductivity of the mortar. The waste CNTs were analyzed to have a high concentration of multi-walled CNTs, and substituted liquid type waste CNTs were used during mortar mixing in order to increase dispersibility. The temperature change of the mortar with CNT was evaluated when using electric power below DC 24 V in order to utilize a small self-generation facility such as small solar power module when the mortar heats up and to minimize electromagnetic waves. When liquid-type waste CNTs were applied and a voltage of DC 24 V was introduced, it rose to 60 ℃ in a 200 × 100 × 50 mm mortar block specimen. The field applicability of self heating mortar with waste CNT was sufficient and also the amount of change in heat energy in mortar with liquid type waste CNT, carbon fiber and waste cathode materials is more effective compared to it of other variables.

A Treatment and Construction Use of Municipal Solid Waste Ash (도시고형 폐기물 소각재의 무해화 처리와 응용)

  • Lee, Jae-Jang;Shin, Hee-Duck;Park, Chong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.45-49
    • /
    • 2001
  • Many cities and provinces are rapidly depleting landfill spaces. As the result, some municities have adopted to incinerate their municipal solid waste(MSW). The motive behind the choice is that incineration significantly reduces the volume of solid waste in need of disposal, destroys the harmful organic compounds that are present in MSW, and provides an attractive source of alternative energy. Conclusively, the generation of MSW ash is expected to increse in the furture. However, disposing the MSW ash in landfills may not always be an environmentally or an economically feasible solution. This paper addresses the various issues associated with MSW ash and its possible use in construction applications.

  • PDF

Studies on the durability evaluation of the Recycled Cement using Waste Cementitious Powder as Raw material. (폐미분말을 주원료로한 재생시멘트의 내구성능 평가에 관한 연구)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.3-4
    • /
    • 2015
  • Environmental load reduction and sustainable development one of the study's research into the available material is discharged, remove the coarse aggregate and fine aggregate from waste concrete and utilizing the remaining cement fine powder as an alternative raw material for limestone is the main raw material of cement developing playback cement that was the purpose. Physical over existing research and chemical quality was confirmed was evaluated for durability by promoting carbonation test, research studies on the durability evaluation insignificant. As honipyul within the aggregate differential lung fine powder increases carbonation resistance performance've found that increased sharply and, S0 showed fairly similar to the OPC. Therefore, the development within the technology research to separate fine aggregate discharge fully differential and waste fine powder is determined to be the development and use of the playback durability of the cement with the carbonation levels corresponding to the OPC if made.

  • PDF

Chemical Properties of Recycled Cement using Cementitious Powder from Waste Concrete (폐콘크리트 미분말을 이용한 재생시멘트의 화학적 특성)

  • Kang, Dong-Woo;Han, Chang-Woo;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.39-40
    • /
    • 2011
  • This study is to analyse possibility cementitious powder from waste concrete as row material of recycled cement. From the results, we ascertained possibility as recycled cement through XRF & XRD of cementitious powder & recycled cement. As a result of the experiment, cementitious powder from waste concrete, which appeared to recovery hydration chemically at the calcining temperature of 700, suggested highly possibility as recycled cement.

  • PDF

A Study on the Fixed amount of CO2 and the estimation of production on CaCO3 of Waste Concrete Powder using the Ca(OH)2 (Ca(OH)2를 이용한 폐콘크리트 미분말의 CO2 고정량 및 CaCO3 생성량 추정에 관한 연구)

  • Ahn, Hee-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.117-118
    • /
    • 2011
  • South Korea is a ninth greenhouse gas emission nation in the world(2007) and is certainly to perform a duty to conduct reduction role by the Kyoto Protocol in 2013. waste concrete produced in the country is 45 million tons per year and these two issues are being came to the fore as major problems of society. However, if it utilizes wet carbonation system carbon using carbon dioxide and waste concrete as raw material it can expect effect of environmental protection and resource recycling. Furthermore, it can exploit another industry production.

  • PDF

A Property of Porous Concrete applied by Recycled Cement and using Recycled Aggregates Made of EPS Waste (재생시멘트와 폐 EPS 재생골재를 사용한 포러스 콘크리트 물성)

  • Kim Sung-Su;Park Cha-Won;Ahn Jae-Cheol;Kang Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.59-63
    • /
    • 2004
  • In recent days. it is necessary to find environment-friendly way of diposing industrial waste and reclying system. So this study will analyze the property of Porous concrete improved by concrete waste powder and recycled lightweight aggregate and then suggest the ways of reclying. The method deals with experimenting unit weight of capacity. thermal conductivity, compression and ultrasonic pluse velocity. Considering the relation between ultrasonic pluse velocity and unit weight & thermal conductivity through the graph. the result of relation between ultrasonic pluse velocity and unit weight & thermal conductivity on the graph expessed their high interaction shown as direct proportion on the graph. Recycled Porous concrete merits lightweight and adiabatic. Therefore. we will expect that the current using ALC and Recycled Porous concrete has be similar thermal conductivity.

  • PDF

Properties of Extruding Panel using Waste Concrete Powder with Mineral Carbonation as Silica Source (광물탄산화를 거친 폐콘크리트 미분말을 실리카 원료로 활용한 압출성형패널의 특성)

  • Choi, Hong-Beom;Kim, Kin-Man;Yu, Jae-Seong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.13-14
    • /
    • 2017
  • In this paper, research for use possibility as silica source of waste concrete powder discharged from direct and indirect carbonation has progressed. For the research, properties on the extruding panel using waste concrete powder with high silica content is evaluated. As the results, compressive strength of specimen is increased 24% compared to control specimen when waste concrete powder replaced 50%, that is discharged from carbonation process, as silica source.

  • PDF

The Properties of Concrete containing Waste-glass Powder (혼화재로서 폐유리 미분말을 사용한 콘크리트의 특성 평가)

  • Choi, Sung-Woo;Ryu, Deug-Hyun;Kim, Jun-Hyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.222-223
    • /
    • 2017
  • In the automotive industry, such as scrap metal and plastic scrap process is being recycled. Although the glass beads are used as road paving or other additives and processing crushing, recycling is known that there are limits. The utilization of waste glass was evaluated as a concrete admixture by using powder characteristics and chemical composition of the glass. As a result of using waste-glass powder as an admixture, it is difficult to expect the pozzolanic effect, but it is found that it can increase the fluidity of concrete and ensure the durability performance in the appropriate amount range.

  • PDF

A Study on Properties of Self-Compacting Concrete with waste marble powder (폐 대리석 분말을 활용한 자기충전 콘크리트의 특성)

  • Jeong, Euy-Chang;Lee, Yong-Moo;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.76-77
    • /
    • 2013
  • The paper study on the mechanical properties of self-compacting concrete with waste marble powder. A change in the replacement ratio s of waste marble powder was measured compressive strength and slump flow, U-Box. As a results, Slump flow and U-box using waste marble powder tend to increase slump flow and compacting with replacement ratio. As the concrete with a replacement ratio of copper slag up to 10% was found to have a compressive strength superior to that of plain.

  • PDF