• Title/Summary/Keyword: Construction Vibration

Search Result 1,335, Processing Time 0.023 seconds

Effect of Incident Direction of Earthquake Motion on Seismic Response of Buried Pipeline (지진파 입사방향에 따른 매설관 종방향 응답특성 규명)

  • Kwak, Hyungjoo;Park, Duhee;Lee, Jangguen;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.9
    • /
    • pp.43-51
    • /
    • 2015
  • In this paper, a 3D shell-spring model that can perform time history analysis of buried pipelines is used to evaluate the effect of the incident direction of the earthquake motion. When applying harmonic motions, it is shown that the period of vibration has pronounced influence on the response of buried pipelines. With decrease in the period, the curvature of the pipeline and corresponding response are shown to increase. To evaluate the effect of the incident angle, the motions are applied in the direction of the pipleline, horizontal, and vertical planes. When the motion is applied parallel to the direction of the pipeline, it only induces bending strains and therefore, the response is the lowest. Under motions subjected in horizontal and vertical planes at an angle of $45^{\circ}$ from the longitudinal axis of the buried pipeline, the axial deformation is shown to contribute greatly to the response of the pipelines. When imposing two-components simultaneously, the calculated response is similar to the case where only single-component is imposed. It is because one component only induces bending strain, resulting in very small increase in the response. The trend of the response is shown to be quite similar for recorded motions. Therefore, it is concluded that use of a single-component is sufficient for estimation of the longitudinal response of buried pipelines.

A Study on The Major Environmental Effecting Factors for The Selection Environment-Friendly Railway Corridor (환경 친화적 철도노선대 선정을 위한 주요환경 영향인자에 관한 연구)

  • Kim, Dong-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.132-138
    • /
    • 2009
  • The energy efficiency and environment-friendly aspect of the railway system would be superior to other on-land transportation systems. In a preliminary feasibility study stage and selection of optimal railway corridor, the energy efficiency and problems related to environment are usually not considered. For the selection of optimal railway corridor, geographical features and facility of management are generally considered. Environment effect factors for the selection of environment-friendly railway corridor are focused and studied in this paper. In this study, various analysis of opinion of specialists (railway, environment, transport, urban planning, survey) and the guideline for construction of environment-friendly railway were accomplished. From these results of various analysis, 7 major categories (topography/geology, flora and fauna, Nature Property, air quality, water quality, noise/vibration, visual impact/cultural assets) were extracted. To select environment friendly railway corridors, many alternatives should be compared optimal corridor must be selected by a comprehensive assessment considering these 7 categories. The investment for railway systems can be encouraged by the considering of main environmental effect factor evaluated with the modified environmental weight factors for environment-friendly railway construction.

Wind Tunnel Test Study on the Characteristics of Wind-Induced Responses of Tall Buildings with Openings (중공부(中空部)를 가진 고층건축물(高層建築物)의 풍응답(風應答) 특성(特性)에 관한 풍동실험(風洞實驗) 연구(硏究))

  • Kim, Dong Woo;Kil, Yong Sik;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.499-509
    • /
    • 2005
  • The excessive wind-induced motion of tall buildings most frequently result from vortex-shedding-induced across-wind oscillations. This form of excitation is most pronounced for relatively flexible, lightweight, and lightly damped high-rise buildings with constant cross-sections. This paper discusses the aerodynamic means ofmitigating the across-wind vortex shedding induced in such situations. Openings are added in both the drag and lift directions in the buildings to provide pressure equalization. Theytend to reduce the effectiveness of across-wind forces by reducing their magnitudes and disrupting their spatial correlation. The effects of buildings with several geometries of openings on aerodynamic excitations and displacement responses have been studied for high-rise buildings with square cross-sections and an aspect ratio of 8:1 in a wind tunnel. High-frequency force balance testshave been carried out at the Kumoh National University of Technology using rigid models with 24 kinds of opening shapes. The measured model's aerodynamic excitations and displacement were compared withthose of a square cylinder with no openings to estimate the effectiveness of openings for wind-induced oscillations. From these results, theopening shape, size, and location of buildings to reduce wind-induced vortex shedding and responses were pointed out.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

A study on the clogging of shield TBM cutterhead opening area according to the characteristics of cohesive soil content (점성토 함량 특성에 따른 shield TBM cutterhead 개구부의 폐색현상에 관한 연구)

  • Bang, Gyu-Min;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.265-280
    • /
    • 2021
  • Population density due to urbanization is making people interested in underground space development and much interest in TBM construction with low vibration and noise. This led to a lot of research on TBM. However, research on the characteristics of the cutterhead opening of the TBM equipment being occluded under the ground conditions under which it is excavated is insufficient. Accordingly, a study was conducted to investigate clogging of the cutterhead opening during the shield TBM rolling. To identify the clogging of cutterhead openings in SHIELD TBM equipment, the reduced model experiment was divided into clay rate (10%, 30%, 50%, 60%), cutterhead opening rate (30%, 50%, 60%), and cutterhead rotation direction (one-way, two-way) and rotational speed (3 RPM) and conducted in 36 cases. Results of scale model test on shield TBM clogging, it was analyzed that the ground condition containing clay soil increased the clogging effect in both directions than the unidirectional rotation, and that the lower the rotational speed of the cutterhead, the less the clogging effect. Accordingly, the direction of cutterhead rotation, rotational speed and opening rate are calculated by taking into account ground conditions during ground excavation, the clogging effect can be reduced. It is believed to be effective in saving air as the clogging effect is reduced. Therefore, this study is expected to be an important material for domestic use of shield TBM.

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

An Experimental Analysis of Ultrasonic Cavitation Effect on Ondol Pipeline Management (온돌 파이프라인 관리를 위한 초음파 캐비테이션 효과에 대한 실험적 분석)

  • Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • In the context of Korean residential heating systems, Ondol pipelines are a prevalent choice. However, the maintenance of these pipelines becomes a complex task once they are embedded within concrete structures. As time progresses, the accumulation of sludge, corrosive oxides, and microorganisms on the inner surfaces of these pipelines diminishes their heating efficiency. In extreme scenarios, this accumulation can induce corrosion and scale formation, compromising the system's integrity. Consequently, this research introduces an ultrasonic generation system tailored for the upkeep of Ondol pipelines, with the objective of empirically assessing its practicality. This investigation delineates three variants of ultrasonic generating apparatuses: those employing surface vibration, external generation, and internal generation techniques. To emulate the presence of contaminants within the pipelines, substances in powder, slurry, and liquid forms were employed. The efficacy of the cleaning process post-ultrasonic wave application was scrutinized over time, with image analysis methodologies being utilized to evaluate the outcomes. The findings indicate that ultrasonic waves, whether generated externally or internally, exert a beneficial effect on the cleanliness of the pipelines. Given the inherent characteristics of Ondol pipelines, external generation proves impractical, thereby rendering internal generation a more viable solution for pipeline maintenance. It is anticipated that future endeavors will pave the way for innovative maintenance strategies for Ondol pipelines, particularly through the advancement of internal generation technologies for pipeline applications.

A Case Study of Electronic-blasting, Railroad Tunnel to Pass under Existing Highway (기존 고속도로 하부 통과를 위한 철도터널 전자발파 시공사례)

  • Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon
    • Explosives and Blasting
    • /
    • v.32 no.2
    • /
    • pp.16-24
    • /
    • 2014
  • In this "Wonju~Jaecheon double-lanes railroad" project, a highway is located at about 13meter above a tunnel. Initially, rock-splitting method was used for the tunnel excavation in order to minimize the possible damage on the highway. The method, however, takes a long time for the tunnel excavation and that may cause other problems like large displacement of tunnel and subsidence of highway ground before the tunnel can be stabilized by supporters. Therefore, the application of electronic blasting method(eDdevII) was recommended to control the blast vibration below 1.0cm/sec as well as to prevent the subsidence of highway ground. The analysis of the influence of tunnel excavation on the highway showed that electric blasting method is permissible for the safe management of the highway. Based on that, the tunnel construction under a highway could be carried out quickly and safely without any damages on the highway.

Architectural Acoustic Performance Renovation of the Large Gymnasium using Acoustic Simulation (음향시뮬레이션을 이용한 대형 실내체육관의 건축음향성능 개선에 관한 연구)

  • Yun, Jae-Hyun;Kim, Jae-Soo
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • In this study, an analysis is carried out on the acoustic design for an indoor gymnasium scheduled to be built at Buan County, Chonbuk Province. By way of background, the study examines the case of a large-scale indoor gymnasium that has been constructed in the local area of Hangan-myeon. There are many examples whereby this gymnasium could be used not only as a sporting facility for the residents, but also as a multipurpose space for public performances such as leisure activities, lectures, assembling activities, theatre and concerts etc. In order to maximize the functional utilization of such an indoor gymnasium, it is important to simultaneously verify the acoustic capabilities of the space in terms of Definition of both Voice and Music. However, as a large-scaled athletic facility, the building was designed with a high ceiling-height to accommodate its functional characteristics. The space forms a Sound Focus whereby the sound is concentrated at a specific part, and because the vibration of sound is too loud due to its broad volume, acoustic defects arise such as a significant number of Echoes. Using this gymnasium as a precedent, this study proposes an acoustic design based on the drawings of the indoor gymnasium that is scheduled to be built at B County, Chonbuk Province. The gymnasium is equipped with an optimized acoustic condition passing through the Acoustic Simulation Phase. From the results of an Acoustic Simulation, we can design an indoor gymnasium that is equipped with a considerably satisfying and improved acoustic performance compared with the building before it was reformed. It is also considered that the use of such materials can fundamentally reduce construction costs and can improve acoustic performance, at the planning and design stages for similar sporting facilities in the future.

Design of Driver License Simulation Model Using 3D Graphics (3D 그래픽을 적용한 운전면허 시뮬레이터 설계)

  • Won, Ji-Woon;Hong, Jinpyo
    • Journal of Practical Engineering Education
    • /
    • v.5 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • Recently the construction of simulation environment is an important issue in all fields. In case of the training for operating machines such as airplanes or spaceships which cause a huge cost, simulators could be helpful to reduce the costs and training efforts by simulating real situations. When people get a driver's license, too many trainees have to wait for their turns because of the limited number of cars and the small space of training sites. To solve this problem, we have designed and developed the basic design for the simulators. We suggest the Computer 3D Simulation Model for a driver's practice. The concept of this simulator is from a 3D Racing-game which suits for a driving exercise. We provide users with handle-controlled simulation settings to let users feel reality as if they drive in real through this simulator. We also use a 'force-feedback' system which gives handle vibration when users collide against obstacles or exceed lanes. Users can be absorbed in the simulation program and feel the sense of the real. This paper is the study about modeling the driving exercise model of 'computer 3D simulation', and producing and utilizing the simulator through this modeling.