• Title/Summary/Keyword: Construction Time

Search Result 8,064, Processing Time 0.033 seconds

An Adaptive and Real-Time System for the Analysis and Design of Underground Constructions

  • Gutierrez, Marte
    • Geotechnical Engineering
    • /
    • v.26 no.9
    • /
    • pp.33-47
    • /
    • 2010
  • Underground constructions continue to provide challenges to Geotechnical Engineers yet they pose the best opportunities for development and deployment of advance technologies for analysis, design and construction. The reason for this is that, by virtue of the nature of underground constructions, more data and information on ground characteristics and response become available as the construction progresses. However, due to several barriers, these data and information are rarely, if ever, utilized to modify and improve project design and construction during the construction stage. To enable the use of evolving realtime data and information, and adaptively modify and improve design and construction, the paper presents an analysis and design system, called AMADEUS, for underground projects. AMADEUS stands for Adaptive, real-time and geologic Mapping, Analysis and Design of Underground Space. AMADEUS relies on recent advances in IT (Information Technology), particularly in digital imaging, data management, visualization and computation to significantly improve analysis, design and construction of underground projects. Using IT and remote sensors, real-time data on geology and excavation response are gathered during the construction using non-intrusive techniques which do not require expensive and time-consuming monitoring. The real-time data are then used to update geological and geomechanical models of the excavation, and to determine the optimal, construction sequences and stages, and structural support. Virtual environment (VE) systems are employed to allow virtual walk-throughs inside an excavation, observe geologic conditions, perform virtual construction operations, and investigate stability of the excavation via computer simulation to steer the next stages of construction.

  • PDF

Effects of Extending Duration of Nighttime Road Construction (도로품질 향상을 위한 야간 도로공사 시간확대의 영향분석)

  • Lee, Dongmin;Choi, Junseong;Park, Jejin;Park, Yongjin
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.153-162
    • /
    • 2017
  • PURPOSES : This study was conducted to analyze the effects arising from extending the duration of nighttime road construction on improving road quality and durability. METHODS : Most previous studies estimating the social cost of various construction conditions did not consider road pavement cooling time as a factor in improving road pavement quality. This study investigated the feasibility of achieving higher road quality and durability by extending the duration of nighttime road construction time extension. For this investigation, the effects of such an extension on traffic conditions were analyzed based on micro-simulation studies and scenario-based cost-benefit analyses, using factors including traffic volume, delay, construction cost, and road pavement cooling time. RESULTS : The results of the traffic simulation studies and cost-benefit analyses indicate that the current road construction method that emphasizes completing nighttime road construction by 6 a.m. reduces pavement life while causing relatively little traffic delay. If the night construction time is instead extended to 2 p.m., road pavement lifetime is increased, reducing road re-construction cost. These savings are greater than the cost of congestion arising from extending the duration of nighttime construction. CONCLUSIONS : The current nighttime construction durations need to be extended in order to efficiently manage roads and reduce road management costs.

A Study on Optimal Lead Time Selection Measures of the Construction Materials (건설자재의 적정 리드타임 산정에 관한 연구)

  • Lee, Sang-Beom
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.105-110
    • /
    • 2004
  • Resource procurement is an important management area because cost of resource covers 40% of total construction project cost and resource delivery has direct relationship with project performance. Integration of cost provides various potentials for effective and efficient project control. This study investigates the usefulness of time in resource procurement management focused on materials. These days, construction projects have characterized manufacture because of industrialization and component. Therefore, application of systematic resource planning has been requested in the construction. There are many companies conducting procurement of resource on the web by applying MRP, ERP etc. in the construction. However, in applying them in the construction yet, there is obstruction. MRP has the character doing its function under accurate cost prediction of resource. But prediction of resource is difficult in industry mechanism of the construction. If accurate cost prediction of resource is possible in the construction, it will be expected to reduce cost of procurement of resource substantially by applying successful resource planning model in the manufacture. On the basis of recent current, the purpose of study is to present procurement of resource system that period observance of construction and minimization of stock is possible by reflecting accurate lead-time to apply proactive thought to be able to cope with alteration of construction schedule efficiently in analyzing resource planning of the construction site.

Prediction of duration and construction cost of road tunnels using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Nejati, Hamid Reza;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.65-75
    • /
    • 2022
  • Time and cost of construction are key factors in decision-making during a tunnel project's planning and design phase. Estimations of time and cost of tunnel construction projects are subject to significant uncertainties caused by uncertain geotechnical and geological conditions. The Gaussian Process Regression (GPR) technique for predicting ground condition and construction time and cost of mountain tunnel projects is used in this work. The GPR model is trained with data from past mountain tunnel projects. The model is applied to a case study in which the predicted time and cost of tunnel construction using the GPR model are compared with the actual construction time and cost for model validation and reducing the uncertainty for the future projects. In addition, the results obtained from the GPR have been compared with to other models of artificial neural network (ANN) and support vector regression (SVR) that the GPR model provides more accurate results.

The State of Schedule Management and the Recognition of Duration Shortening (공정관리의 실태 및 공기 단축에 대한 인식정도)

  • Kim, Ja-Yeon;Kim, Eui-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.87-94
    • /
    • 2010
  • Construction projects are based on the actual field, so if the construction schedule that is established in the construction plan is delayed or extended for various reasons, construction companies are vulnerable to claims, and thus strive to complete a building within the planned timeline by shortening the construction time. Therefore, this study surveyed technicians in apartment construction in Gwangju, and studied their perceptions of the actual conditions of process control, construction time needs, goals, and methods. The results showed that the organization of the process control department and professional employees was lacking compared to other regions. The need for construction time was perceived as high, while the reduction of the construction cost was perceived as low. Regarding the reduction goal, they perceived highly the preparation for the delay of construction time and various claims, and for the reduction method, they mentioned the extension of working hours and the increase in employees. Based on the results of this study, technicians should consider that a reduction of construction time not only can make up for a delay in construction, but is also closely related to improvements in production through reduction of cost, and increased international competitiveness.

A Basis Study on Assessment Method of Influence Factors about the Shortening of the Construction Time Applying FMEA in Apartment Housing (FMEA를 활용한 공동주택 공기단축 영향요인 평가방법에 관한 기초연구)

  • Ha, Hee-Yoon;Ahn, Byung-Ju;Lee, Yoon-Sun;Kim, Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.383-386
    • /
    • 2007
  • Recently, The percentile of the apartment housing within the apartment construction of domestic is increasing daily. Especially the construction duration in apartment construction is an very important factor which affects project cost. Therefore the construction companies the effort to shorten construction duration. The influence factors of the construction duration are analyzed to shorten construction duration through this tendency. The shown factors are needed to assessment method efficiently. This study is to suggest a method for the assessment of influence factors about the shortening of the construction time in apartment housing based on the FMEA(Failure Mode and Effect Analysis) method.

  • PDF

IMPROVING CONSTRUCTION PROJECT DELIVERY THROUGH AUTOMATION AND ROBOTICS

  • Jasper Mbachu
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.237-241
    • /
    • 2009
  • Automation and robotic technology (ART) has been successfully applied in the manufacturing and allied industries to achieve on-time delivery of quality products at increasingly reduced costs. Meeting time, quality and cost targets still remains a big challenge in the global construction industry with prevalence of time and cost overruns. Application of ART in the construction industry could contribute to significant improvement in the efficient and effective delivery of projects to meet and exceed client expectations. However, the uptake of ART is still low in the construction industry. This study investigates the various ways in which ART could be applied to improve construction project delivery, potential areas of applications, and constraints to the uptake of the technology in the construction industry. Recommendations are made for improving the uptake of ART in the construction industry.

  • PDF

Implementation of Time Management; Based on Road Construction Projects (공정관리 적용에 관한 연구: 도로현장 중심으로)

  • Lee, Kyu-Sun;Park, Hee-Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.451-456
    • /
    • 2011
  • There is a relationship between effective time management and project success. Therefore, advanced time management techniques have recently been introduced. This paper investigates the current time management practices for road construction sites and proposes lean construction practices to effectively implement time management. This would be helpful to establish an effective schedule plan. Also, an efficient construction site time management system can be developed base on this fundamental research. Furthermore, future research should be performed to investigate the performance of lean construction.

A Markov-based prediction model of tunnel geology, construction time, and construction costs

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Ali, Hunar Farid Hama;Salim, Sirwan Ghafoor;Abdulhamid, Sazan Nariman;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.421-435
    • /
    • 2022
  • The necessity of estimating the time and cost required for tunnel construction has led to extensive research in this regard. Since geological conditions are significant factors in terms of time and cost of road tunnels, considering these conditions is crucial. Uncertainties about the geological conditions of a tunnel alignment cause difficulties in planning ahead of the required construction time and costs. In this paper, the continuous-space, discrete-state Markov process has been used to predict geological conditions. The Monte-Carlo (MC) simulation (MCS) method is employed to estimate the construction time and costs of a road tunnel project using the input data obtained from six tunneling expert questionnaires. In the first case, the input data obtained from each expert are individually considered and in the second case, they are simultaneously considered. Finally, a comparison of these two modes based on the technique presented in this article suggests considering views of several experts simultaneously to reduce uncertainties and ensure the results obtained for geological conditions and the construction time and costs.

Improvement of Apportioning Responsibility for the Time Extension in Construction Projects (건설공사 공기연장 책임구분의 문제점 및 개선방안 제시)

  • Kim, Jong-Han;Kim, Kyung-Rai
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.60-67
    • /
    • 2007
  • Cases of the time extension have continuously transpired in the public construction projects. The potential of economical loss and claims is increased because the concerned parties such as an owner or a contractor have not properly performed their own responsibility for the time extension. Therefore, this paper aimed to improvement of apportioning responsibility for the time extension in construction projects.

  • PDF