• Title/Summary/Keyword: Construction Sites Monitoring

Search Result 194, Processing Time 0.025 seconds

An Analysis on the Lateral Displacement of Earth Retaining Structures Using Fractal Theory (플랙탈 이론을 이용한 흙막이 벽체 수평변위 분석)

  • Lee, Chang-No;Jung, Kyoung-Sik;Koh, Hyung-Seon;Park, Heon-Sang;Lee, Seok-Won;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.19-29
    • /
    • 2015
  • Nowadays, the importance of the information management of construction sites to achieve the goal of safety construction. This management uses the collaborated analysis of in-situ monitoring data and numerical analysis, especially of an earth retaining structures of excavation sites. In this paper, the fractal theory was applied to actually monitored data from various excavation sites to develop the alternative interpolation technique which could predict the displacement behavior of unknown location around the monitoring locations and the future behavior of the monitoring locations with the steps of excavation. Data, mainly from inclinometer, were collected from various sites where retaining structures were collapsed during construction period, as well as from normal sites with the characteristics of geology, excavation method etc. In the analyses, Hurst exponent (H) was estimated with monitored periods using the Rescaled range analysis (R/S analysis) method applying the H in simulation processes. As the results of the analyses, Hurst exponents were ranged from 0.7 to 0.9 and showed the positive correlation of H > 1/2. The simulation processes, then, with the Hurst exponent estimated by Rescaled range analysis method showed reliable results. In addition, it was also expected that the variation of Hurst exponents with the monitoring period could instruct the abnormal behavior of an earth retaining structures to directors or operators. Therefore it was concluded that fractal theory could be applied for predicting the lateral displacement of unknown location and the future behavior of an earth retaining structures to manage the safety of construction sites during excavation period.

A Study of Health & Disaster Monitoring Measurement using Ubiquitous Active Communication Digital Datalogger System for Railway Structures (유비쿼터스 기반 통신의 철도구조물에 대한 재난감지용 능동형 데이터로거 시스템 연구)

  • Lee, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.470-475
    • /
    • 2011
  • The objective of this study is the developement health & disaster monitoring measurement using ubiquitous active communication digital datalogger system for monitoring measurement of railway construction sites. For the replacement of current passive data communication, ubiquitous active communication digital datalogger system is studied for the first time with in a country. Therefore data communication method and analyzing program of automatic measurement data is developed for the global positioning automatic digital datalogger system. The results of this study will be using both real time automatic monitoring measurement and health & disaster monitoring measurement of railway structures.

  • PDF

Robust Real-time Object Detection on Construction Sites Using Integral Channel Features

  • Kim, Jinwoo;Chi, Seokho
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.304-309
    • /
    • 2015
  • On construction sites, it is important to monitor the performance of construction equipment and workers to achieve successful construction project management; especially, vision-based detection methods have advantages for the real-time site data collection for safety and productivity analyses. Although many researchers developed vision-based detection methods with acceptable performance, there are still limitations to be addressed: 1) sensitiveness to the shape and appearance changes of moving objects in difference working postures, and 2) high computation time. To deal with the limitations, this paper proposes a detection algorithm of construction equipment based on Integral Channel Features. For validation, 16,850 frames of video streams were recorded and analyzed. The results showed that the proposed method worked in high performance in terms of accuracy and processing time. In conclusion, the developed method can help to understand useful site information including working pattern, working time and input manpower analyses.

  • PDF

Application of Construction Equipment Fleet Management System through the Case Study of Air and Vessel Traffic Control Technology (항공 및 해상 관제기술 사례연구를 통한 건설장비 관제 시스템 활용 방안에 관한 연구)

  • Park, Ji Soo;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.493-500
    • /
    • 2015
  • The importance of the air and vessel traffic control center is increasing rapidly after the recent accident of 'Sewol ferry'. Aviation, marine, and the logistics sectors are already using monitoring and control technology widely. However, the monitoring and control system for complex and dangerous construction sites operation has yet to be employed. A monitoring/control system is required for effective communication between the control center and the construction equipment fleet at a construction site, and also the exact role that notifies accurate process and identification of hazards on construction sites as needed. Therefore, this paper presents the study about communication between the construction equipment fleet and the control center through the comparison of air traffic, marine, and logistics control systems for the development of construction equipment fleet management system.

Basic Research for Construction Indoor Digital Twin Construction (건설공사 실내 Digital Twin 구축을 위한 기초연구)

  • Kim, Young Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.349-350
    • /
    • 2023
  • In the field of domestic construction, 3D modeling mainly targets outdoor construction sites, and acquires outdoor spatial information by operating UAVs and UGVs equipped with cameras. 3D modeling of construction sites tends to expand its scope to indoors along with the increasing demand for site monitoring and management through indoor spatial information. In the case of indoors, it is impossible to shoot with a drone after the framework and outer walls of the building are completed, so it is necessary to collect indoor spatial information and 3D modeling using a 360 camera. The purpose of this study is limited to basic research to establish a process that can obtain simple and high-quality indoor 3D modeling results using indoor data collected from 360 cameras.

  • PDF

Integrated Object Detection and Blockchain Framework for Remote Safety Inspection at Construction Sites

  • Kim, Dohyeong;Yang, Jaehun;Anjum, Sharjeel;Lee, Dongmin;Pyeon, Jae-ho;Park, Chansik;Lee, Doyeop
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.136-144
    • /
    • 2022
  • Construction sites are characterized by dangerous situations and environments that cause fatal accidents. Potential risk detection needs to be improved by continuously monitoring site conditions. However, the current labor-intensive inspection practice has many limitations in monitoring dangerous conditions at construction sites. Computer vision technology that can quickly analyze and collect site conditions from images has been in the spotlight as a solution. Nonetheless, inspection results obtained via computer vision are still stored and managed in centralized systems vulnerable to tampering with information by the central node. Blockchain has been used as a reliable and efficient decentralized information management system. Despite its potential, only limited research has been conducted integrating computer vision and blockchain. Therefore, to solve the current safety management problems, the authors propose a framework for construction site inspection that integrates object detection and blockchain network, enabling efficient and reliable remote inspection. Object detection is applied to enable the automatic analysis of site safety conditions. As a result, the workload of safety managers can be reduced with inspection results stored and distributed reliably through the blockchain network. In addition, errors or forgery in the inspection process can be automatically prevented and verified through a smart contract. As site safety conditions are reliably shared with project participants, project participants can remotely inspect site conditions and make safety-related decisions in trust.

  • PDF

DEVELOPMENT OF MATERIAL TRACKING SYSTEM USING WIRELESS TECHNOLOGY IN HIGH-RISE BUILDING

  • Jae-Goo Han;Min-Woo Lee;Soon-Wook Kwon;Moon-Young Cho
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.1017-1021
    • /
    • 2005
  • There is a need for effective tracking and control of material loading and delivery time especially during the finishing-work phases to eliminate the need for lay-down space on the site. Hence, it is essential to monitor the relevant information regarding material procurement in construction sites, and it is also the key factor for successful site control and the adoption of the Just-in-Time concept for high-rise building construction. The purpose of this study is to test RFID's readability in order to develop a finishing material monitoring system through the application of RFID technology.

  • PDF

A Study of Monitoring Measurement using Global Positioning Digital Datalogger System for Railway Structures (GPS를 내장한 위치추적 데이터로거 시스템의 철도 계측 적용성 연구)

  • Lee, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2002-2007
    • /
    • 2010
  • The objective of this study is the developement monitoring measurement using global positioning digital datalogger system for monitoring measurement of railway construction sites. For the replacement of current passive data communication, Global positioning digital datalogger system using active communication is studied for the first time with in a country. Therefore data communication method and analyzing program of automatic measurement data is developed for the global positioning automatic digital datalogger system. The results of this study will be using real time automatic monitoring measurement of railway structures.

  • PDF

Construction Site Safety Management System Using ZigBee Communication (지그비 통신을 이용한 건설 현장 안전 관리 시스템)

  • Lee, ChangHo;Kim, KangHee;Kim, JiWon;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.39-51
    • /
    • 2017
  • Recently, looking at construction sites with either large or small scale, accidents like collision, fall, etc. occur often. These accidents lead to not only damage of human lives but also serious economic loss. In case of large scale constructions sites, safety management systems are used to reduce industrial accidents. However in construction sites with small scale, those systems cannot be applied due to problems such as lack of compatability and high installation expense. In this case, just by putting on safety gears can also reduce industrial accidents. Therefore, in this paper, a safety management systems that can be used at both large and small scale construction sites is proposed. This safety management system consists of a smart module, a repeater and a gateway, and a monitoring system. The smart module, which is detachable, is attached to a safety helmet. This module transfers the current status of the user to the monitoring system through the repeater and the gateway. The repeater transfers the data received from the smart module to the gateway, and the gateway sends the data from the repeater to the monitoring system. The monitoring system shows the user status to the safety supervisor by displaying the data - temperature, height, intensity of illumination, images - received from the smart module. The safety supervisor can monitor the user status in real-time and take immediate action in case of emergency through this monitoring system.

A Study on the Biotope Planning of Dong-gang River Watershed in Ecological and Landscape Conservation Area (동강 생태·경관보전지역 내 비오톱(Biotope) 조성 계획)

  • Park, Eun Kyoung;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2013
  • This study was conducted to make a biotop planning and construct 3 types of biotop by each site conditions. Three sites of different types in ecological and scenery conservation area of the Dong-gang river were selected by expert brain-storming process and constructed terrestrial biotops and aquatic biotops. Targets of 3 sites were set up such as constructing a habitat for Kaloula borealis and an ecological education place, building a terrestrial biotopes and monitoring the natural vegetation succession, and constructing a habitat for Luciola unmunsana Doi. The study results can be applied hereafter to ecological restoration projects, after construction of habitat, the priority should be prepare measures of monitoring and maintenance, hereafter continuous study on ecological restoration should be performed actively through construction of biotope and wild animals and plants habitat.