• 제목/요약/키워드: Construction Behavior

검색결과 3,641건 처리시간 0.026초

도심지 근접시공의 자동계측응용 (Application of Automated Measuring System for the Underground Construction in Urban Area)

  • 남순성;정상용
    • 화약ㆍ발파
    • /
    • 제15권2호
    • /
    • pp.53-72
    • /
    • 1997
  • It is impossible to precat the behavior of ground soil and structure accurately during underground construction in urban area or excavation in soft ground area because of difference between the assumed design condition and the actual site condition. Therefore, it must be managed by measuring system and correct the difference by real data. Large scale under ground construction in urban area like a seoul subway project has needed for Intelligent Construction technique, a field of the Engineering Contractor. The automated measuring system is developed for the technique. It is described that the procedure and the method of measuring work with application of the automated measuring system.

  • PDF

ALGORITHM FOR THE CONSTRUCTION OF THE STATE TRANSITION DIAGRAM OF A SACA OVER GF($2^p$)

  • Choi, Un-Sook;Cho, Sung-Jin
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1331-1342
    • /
    • 2009
  • In this paper, we analyze the behavior of the state transition of nongroup CA with a single attractor over GF($2^p$)(p > 1), and propose the algorithm for the construction of the state transition diagram of a Single Attractor CA(SACA) over GF($2^p$) which is very different from the construction algorithm for the state transition diagram of GF(2) SACA.

  • PDF

Effect on Dynamic Behavior of Group Piles with Changing Thickness of Pile Cap

  • Jeong, Kusic;Ahn, Sangro;Kim, Seongho;Ahn, Kwangkuk
    • 한국지반환경공학회 논문집
    • /
    • 제19권7호
    • /
    • pp.5-11
    • /
    • 2018
  • Instead of a single pile, group piles are usually used for the pile foundation. If the earthquake occurs in the ground where group piles are installed, dynamic behavior of group piles are affected not only by interaction of piles and the ground movement but also by the pile cap. However, in Korea, the pile cap influence is not taken account into the design of group piles. Research on dynamic behavior of group piles has been performed only to verify interaction of piles and the ground and has not considered the pile cap as a factor. In this research, 1g shaking table model tests were performed to verify the thickness of the pile cap affects dynamic behavior of group piles that were installed in the ground where the earthquake would occur. The test results show that, as thickness of the pile cap increased, acceleration and horizontal displacement of the pile cap decreasd while vertical displacement of the pile cap increased. The results also showed that, among the group files tested, acceleration, horizontal displacement, and vertical displacement of the bearing pile are smaller than those of the friction pile.

재생 굵은골재를 사용한 철근 콘크리트 보의 거동에 관한 실험연구 (An Experimental Study on the Behavior of Reinforced Concrete Beams using Recycled Coarse Aggregate)

  • 이명규;김광서;이근호;윤건호;정상화
    • 한국건축시공학회지
    • /
    • 제4권3호
    • /
    • pp.133-141
    • /
    • 2004
  • The object of this study is to investigate experimentally the shear behavior of reinforced concrete beams using recycled coarse aggregate. At first, the specimens are manufactured for the compressive strength of 210kgf/$\textrm{cm}^2$ with recycled coarse aggregate ratio of 0%, 20%, 40%, 60%, 80%, 100%, respectively. From the results, Reinforced concrete beams using recycled coarse aggregate were made with recycled coarse aggregate ratio of 0%, 20%, 40%, 60%, 80%, with stirrups and recycled coarse aggregate ratio of 0%, 20%, 40% without stirrups. The results of crack pattern and failure mode, load-displacement curve(center point and load point) and load-steel curve(compressive, tensile, stirrup) were analysed. It is concluded from the test that the shear behavior of recycled concrete beams is determined to have similar behavior of normal concrete beams. Therefore, from this study the application of recycled concrete to concrete structures may be possible. But, for using the recycled concrete widely, it is expected that the more studies on quality control, substitution ratio and mix design related with recycled concrete are necessary.

주기하중을 받는 세장한 이중강판합성벽의 비선형해석 (Nonlinear Analysis of Slender Double Skin Composite Walls Subjected to Cyclic Loading)

  • 엄태성;박홍근
    • 한국강구조학회 논문집
    • /
    • 제20권4호
    • /
    • pp.505-517
    • /
    • 2008
  • 휨지배 거동을 나타내는 세장한 이중강판합성벽의 비탄성 거동을 예측하기 위하여 비선형 수치해석 모델이 연구되었다. 수치해석의 편리를 위하여, 제안된 모델은 비교적 단순한 모델을 가지고 비탄성 거동을 근사적으로 예측할 수 있는 거시적 모델로 개발되었다. 휨지배 거동을 나타내는 벽체에 대해서는 다중평행요소 모델이 사용되었으며, 깊은 연결보의 전단거동을 위하여 X형 대각요소 모델이 사용되었다. 각 요소의 주기거동을 예측하기 위하여 콘크리트 및 강판 요소에 대한 간략화된 일축의 주기모델을 제안하였다. 제안된 해석모델은 1자형 및 T형 단일벽과 병렬벽에 적용하였으며, 그 결과는 기존의 실험결과와 비교되었다.

Thermo-structural monitoring of RCC dam in India through instrumentation

  • Ashtankar, V.B.;Chore, H.S.
    • Structural Monitoring and Maintenance
    • /
    • 제2권2호
    • /
    • pp.95-113
    • /
    • 2015
  • The knowledge of the behavior of any roller compacted concrete (RCC) dam and its foundation is gained by studying the service action of the dam and its foundation using measurements of an external and internal nature. The information by which a continuing assurance of structural safety of the RCC dam can be gauged is of primary importance. Similarly, the fact that the information on structural and thermal behavior and the properties of concrete that may be used to give added criteria for use in the design of future RCC dams is of secondary importance. Wide spread attention is now being given to the installation of more expensive instrumentation for studying the behavior of concrete dams and reservoirs and forecasting of any adverse trends. In view of this, the paper traces installation and need of the comprehensive instrumentation scheme implemented to monitor the structural and thermal behavior of 102.4 m high RCC dam constructed near Mumbai in India. An attempt is made in the present paper to emphasize the need to undertake an instrumentation program and evaluate their performance during construction and post construction stage of RCC structures. Few typical results, regarding the thermal and structural behavior of the dam, obtained through instrumentation installed at the dam site are presented and compared with the design considerations. The fair agreement is seen in the response observed through instrumentation with that governing the design criteria.

Comprehensive experimental investigation on mechanical behavior for types of reinforced concrete Haunched beam

  • Albegmprli, Hasan M.;Gulsan, M. Eren;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.39-50
    • /
    • 2019
  • This study presents a comprehensive experimental investigation on mostly encountered types of Reinforced Concrete Haunched Beams (RCHBs) where three modes of RCHBs investigated; the diversity of studied beams makes it a pioneer in this topic. The experimental study consists of twenty RCHBs and four prismatic beams. Effects of important parameters including beam type, the inclination angle, flexure and compressive reinforcement, shear reinforcement on mechanical behavior and failure mode of each mode of RCHBs were examined in detail. Furthermore crack propagation at certain load levels were inspected and visualized for each RCHB mode. The results confirm that RCHBs have different behavior in shear as compared to the prismatic beams. At the same time, different mechanical behavior was observed between the modes of RCHBs. Therefore, RCHBs were classified into three modes according to the inclination shape and mode of failure (Modes A, B and C). However, it was observed that there is no significant difference between RCHBs and prismatic beams regarding flexural behavior. Moreover, a new and unified formula was proposed to predict the critical effective depth of all modes of RCHBs that is very useful to predict the critical section for failure.

모형시험에 의한 점성토 보강토벽의 거동분석 (Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test)

  • 이용안;이재열;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

변수해석을 통한 프리스트레스트 합성거더의 시공단계별 장기거동 평가법 개선방안 (Improvement in Long-term Behavior Estimation of Prestressed Composite Girders for Various Construction Sequences using Parametric Study)

  • 배두병;오창국
    • 한국강구조학회 논문집
    • /
    • 제25권4호
    • /
    • pp.369-377
    • /
    • 2013
  • 합성거더 하부 콘크리트에 프리스트레스를 도입한 프리스트레스트 합성거더의 크리프와 건조수축 평가 시 재령보정 유효탄성계수방법을 이용하면 기존의 야쓰미 해법을 이용한 경우보다 더 정확한 결과를 산출할 수 있다. 하지만, 재령보정 유효탄성계수방법은 산출방법이 복잡하므로 실무에서는 야쓰미 해법을 이용하여 장기거동을 해석하는 것이 일반적이다. 이러한 단점을 보완하기 위하여 이 연구에서는 재령보정 유효탄성계수방법에 의해 여러 시공단계별 재령일수에 따른 변수해석을 수행하고, 야쓰미 해법에 의한 장기거동 해석 시 크리프계수를 보정하여 실무에서 합리적으로 반영할 수 있는 방법을 제시하였다.

Effect of reinforcement strength on seismic behavior of concrete moment frames

  • Fu, Jianping;Wu, Yuntian;Yang, Yeong-bin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.699-718
    • /
    • 2015
  • The effect of reinforcing concrete members with high strength steel bars with yield strength up to 600 MPa on the overall seismic behavior of concrete moment frames was studied experimentally and numerically. Three geometrically identical plane frame models with two bays and two stories, where one frame model was reinforced with hot rolled bars (HRB) with a nominal yield strength of 335 MPa and the other two by high strength steel bars with a nominal yield strength of 600 MPa, were tested under simulated earthquake action considering different axial load ratios to investigate the hysteretic behavior, ductility, strength and stiffness degradation, energy dissipation and plastic deformation characteristics. Test results indicate that utilizing high strength reinforcement can improve the structural resilience, reduce residual deformation and achieve favorable distribution pattern of plastic hinges on beams and columns. The frame models reinforced with normal and high strength steel bars have comparable overall deformation capacity. Compared with the frame model subjected to a low axial load ratio, the ones under a higher axial load ratio exhibit more plump hysteretic loops. The proved reliable finite element analysis software DIANA was used for the numerical simulation of the tests. The analytical results agree well with the experimental results.