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ALGORITHM FOR THE CONSTRUCTION OF THE STATE
TRANSITION DIAGRAM OF A SACA OVER GF(2°)

UN-SOOK CHOI AND SUNG-JIN CHO*

ABSTRACT. In this paper, we analyze the behavior of the state transition
of nongroup CA with a single attractor over GF(2P)(p > 1), and propose
the algorithm for the construction of the state transition diagram of a
Single Attractor CA(SACA) over GF(2P) which is very different from the
construction algorithm for the state transition diagram of GF(2) SACA.
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1. Introduction

Biological self-reproduction was first investigated in terms of von Neumann’s
cellular automaton capable of universal computation and construction [10]. Cel-
lular Automata(CA) are mathematical idealizations of physical systems in which
space and time are discrete, and each cell assume the value either 0 or 1. The cells
evolve in discrete time steps according to some deterministic rule that depends
only on logical neighborhood. For the simplest case, Wolfram [17] suggested
the use of a simple two-state, 3-neighborhood one-dimensional CA with cells ar-
ranged linearly in one dimension. Each cell is essentially comprised of a memory
element and a combinatorial logic that generates the next-state of the cell from
the present-state of its neighboring cells(left, right and self).

Das et al. [8], [9] developed a matrix algebraic tool capable of characterizing
CA. CA have been employed in several applications [11] ~ [16]. Cho et al. [5], [6]
analyzed CA to study hash function, data storage, cryptography and so on. In
particular, they proposed an algorithm for the construction of state transition
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diagram of two predecessor multiple attractor CA over GF(2) by using the
concept of basic path. Also they analyzed the behavior of the state transition of
the complemented nongroup GF(2) CA corresponding to two predecessor linear
nongroup GF(2) CA.

Also, CA has been used as modeling and computing paradigm for a long time.
CA has been used to model many physical systems. While studying the models
of such systems, it is seen that as the complexity of the physical system increase,
the GF(2) CA based model becomes very complex and becomes to difficult to
track analytically. Also such models fail to recognize the presence of inherent
hierarchical nature of a physical system. Sikdar et al. [13], [14] and Cho et
al. [4] studied hierarchical CA to overcome these problems. Sikdar et al. [14]
used group CA over GF(2P) with hierarchical structure [13] for a test pattern
generation. Also they used GF(2P) multiple attractor CA for the diagnosis of
the defect of VLSI circuits.

In this paper, we characterize SACA over GF(2P) and propose the algorithm
of the effective construction of the state transition diagram of GF(2P) SACA
which is very different from the construction algorithm for the state transi-
tion diagram of GF(2) SACA which is in [2]. This algorithm reduce the time-
complexity by changing multiplications of matrices into additions of vectors.
These results will be helpful to study data-storage, hashing by GF(27) SACA
and so on.

2. GF(2?) CA preliminaries
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FIGURE 1. General structure of a GF(2¢) CA

A GF(27) CA can be viewed as an extension of GF(2) CA. It consists of
an array of cells, spatially interconnected in a regular manner, each cell being
capable of storing an element of GF(2?).
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Under three neighborhood restriction, the next state of the ith cell is given
by a function of the weighted combination of the present states of the (i — 1)th,
ith and (i + 1)th cells, the weights being elements of GF(2P). Thus if ¢;(t) is
the state of the ith cell at the #th instant, then

g(t+1) = Qb(wz?](hfl(t), wigs(t), wi+1Qi+1(t))

where ¢ denotes the local transition function of the ith cell and w;_y, w; and
w;y € GF(2P) which specify the weights of interconnections as in Figure 1.
The rule for a three-neighborhood GF(27) CA cell is represented by the vector
of length 3, < w;_1, w;, wip1 > (wi_l,wi, Wiy1 € GF(QP)). Here w;_; indicates
the weight of dependence of the cell on its left neighborhood, while w; and w; 1
indicate the weighted dependence on itself and its right neighborhood respec-

tively. If the same rule vector is applied to all the cells of a GF(27) CA, the CA
is called the uniform GF(2F) CA, otherwise it is called the hybrid GF(2F) CA.

The addition and multiplication operations follow the additive and mul-
tiplicative rules of the underlying GF(2P). The polynomial which generates
GF(2P) is called the generator polynomial.

For example, let 7" be the state transition matrix of a 3-cell GF(2%) CA as
the following.

0 o O
T=]l a 0 «
0 o® 0
, where « is the generator which generates GF(2%). The elements of GF(22) are
0, 1, @ and o? and a is a solution of the generator polynomial glz)=2* +tx+1.
For a present state X of an n-cell GF(2P) CA, the next state ¥ of X is given
by Y =TX.
Let M be a matrix whose characteristic polynomial is the generator polyno-
mial of GF(2P). Then M is called the generator matriz. In the above example,
the generator matrix of g(z) is as the following.

w- (1)

Each state of an n-cell GF(2P) CA can be expressed as the vector which con-
sists of n elements o € GF(2P). For the addition and multiplication operations
over GF(2P), let o be the last column vector of M?. In the above example, each
o' is given by

a= (10 =2, o®=(11)"=3, o= (01)'=1.
The addition and multiplication over GF(2?) are given in Table 1.

[Table 1} Addition and multiplication over GF (22)
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Now we give the following definition which is needed in this paper.

Definition 2.1. i) Linear GF(2P) CA: If the next-state generating logic employs
only XOR logic, then the GF(2P) CA is called a linear GF(2P) CA; otherwise it
is called a non-linear GF(2P) CA.

ii) Complemented GF(27) CA: Complemented GF(2P) CA employ XNOR
logic for one or more cells of GF(2P) CA.

iii) Group GF(2P) CA: GF(2F) CA is called a group GF(2P) CA if all the
states in its state transition diagram lie on cycles, otherwise it is referred to as
a non-group GF(2P) CA.

iv) Reachable state: In the state transition diagram of a non-group CA, a
state having at least one in-degree is called a reachable state, while a state with
no in-degree is called a non-reachable state.

v) Cyclic state: Reachable states which lie on cycles are called cyclic states.

vi) Attractor: A state having a self-loop is referred to as an attractor. An
attractor can be viewed as a cyclic state with unit cycle length.

vii) Depth: The minimum number of clock cycles required to reach the nearest
cyclic state from any nonreachable state in the CA state transition diagram is
defined as the depth of the non-group CA.

viii) Level: Level of a state S; is defined as the minimum number of time
steps required to reach a cyclic state starting from .S;.

ix) GF(2") Single Attractor CA(SACA): The non-group GF(2P) CA for
which the state transition diagram consists of a set of disjoint components form-
ing (inverted) tree-like structures rooted at the only attractor is referred to as
GF(2P) Single Attractor CA.

x) a-tree: The tree rooted at a cyclic state « is called the a-tree.

xi) Predecessor, Immediate predecessor: Let X,Y € GF(2P) be states in
the state transition diagram of the state transition matrix T of a given G F(2?)
SACA. f Y =T"X for some n € N, then Y is called the predecessor of X. If
Y =TX, then Y is called the immediate predecessor of X.

Complemented GF(2P) SACA C’ employs XNOR logic for some cell. The use
of XNOR logic implies that the next state of a particular cell is to be inverted
after evaluation of its state with XOR logic. We call the inverting vector F
as the complement vector, where non zero entries are presented in those cell
positions whose transition function is dependent on XNOR logic. We call C’ the
complemented GF(2P) SACA derived from C with the complement vector F.
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Define Tby TX = TX+F, where X, F € GF(2?) and T is the state transition
matrix of a linear GF(2P) SACA.
Then we obtain

TkX:Tkx+(Tk71+Tk—2+,,,+T_|_[)F’ k=12,
3. Linear GF(2P) SACA

Let C be a linear n-cell GF(2P) SACA. Then C is a non-group GF(2P) CA
and the state transition matrix T of C is singular. In this case the attractor is
the only zero state and the depth of the state transition diagram of C is n. The
number of all states of C is (2P)" and the number of all immediate predecessors
of any reachable state is 27 by the definition of an n-cell GF(2?P) SACA.

The following theorem shows the properties of the state transition matrix of
a linear n-cell GF(2P) SACA.

Theorem 3.1. Let T be the state transition matriz of a linear n-cell GF(2P)
SACA C. Then T satisfies the following properties.

(1) The rank of T (rank(T)) isn — 1.

(2) The rank of T+ I (rank(T +I)) is n.

(3) The characteristic polynomial and the minimal polynomial of T are z™
respectively.

Proof. (1) The set of all immediate predecessors of the zero state is {X €
GF(2)|TX = 0}. Since the number of all immediate predecessors of the zero

state in the state transition diagram of C is ’{X € GF()|TX = O}‘ = 2P, the
number of free variable of the matrix equation TX = 0 is one. Therefore the
dimension of the null space of T’ (dimN(T')) is 1 and thus rank(T) =n — 1.

(2) Since the attractor is the only zero state in the state transition diagram of
C,

NT+I)={XeGF2N|(T+1)X =0} ={X c GF(2")|TX = X} = {0}.
Thus dimN (T + I) is zero. Hence rank(T + I) = n.
(3) Since the depth of the state transition diagram of C is n, T"Y = 0 for all

states Y € GF(2P). Therefore T™ = 0. Hence the characteristic polynomial and
minimal polynomial of T is z™. L

Theorem 3.2. Let C be a linear n-cell GF(2F) SACA. Then the sum of distinct
two immediate predecessors of any reachable state in C is a nonzero immediate
predecessor of the zero state.

Proof. Let X € GF(2P) be a reachable state and let Y, Z € GF(2P) be distinct
immediate predecessors of X. Then TY = T'Z = X. Therefore T{(Y + Z) = 0
and hence Y + Z is an immediate predecessor of the zero state. Furthermore
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Y + Z # 0 because Y # Z. Hence Y + Z is the nonzero immediate predecessor
of the zero state. O

Example 3.3. Consider the following state transition diagram of a 3-cell GF(2?)
SACA with the state transition matrix

T =

O N
=
w = o

Figure 2 shows the state transition diagram of the given GF(2?) SACA. In
this figure, the sum of immediate predecessors (333)! and (210)* of (231)! is
(123)*, that is the nonzero immediate predecessor of the zero state.

FIGURE 2. State transition diagram of a 3-cell GF'(2?) SACA

Definition 3.4. Let C be a linear GF(2F) SACA with depth d and let T be the
state transition matrix of C. Then we call

X 5TX - > TX(=0)
a basic path of the O-tree in C, where X is a nonreachable state of the O-tree in
C.

Theorem 3.5. Let C be a linear n-cell GF(2P) SACA. Let the kth state Si 1 at
level I in the state transition diagram of C be

-1

Sk = b+ 1)Si0+ Zbisi,o

i=1
where k = bby_1 - - ~b1(2,))( 0<k<(2r)1(2r— 1)) is the base 2P expansion of
k. If we know a basic path of the O-tree in C, every state of the remaining part
can be expressed as the sum of the states which lie on the basic path.
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Proof. Let X be a nonreachable state in the state transition diagram of C. Then
we get the following basic path of the O-tree.

X—-TX - > T"X(=0)

Let S0 = T"==1 X Then the number of the states from level 1 to level n is
n
D)= (27" —1
=1
Therefore the number of all states of the state transition diagram of C includ-

ing the attractor is {(2P)® — 1} + 1 = 2P" which is the number of all states of
n-cell GF(27) CA. Also we get

-1
T ((bl +1)S10 + Z biSi,())
=1
-1
= (i +1)TSo+ Y bTSi0
=1
= (i+1)Si10+bi-1S1-20+ -+ baS1 0+ 61500

TS\

I

k
where So.o = 0. Let k' = b];J and k = byby1 -+ b1y, Then K = biby_y - by, -

If we put b, = bj11(i = 1,2,---,0—1), then &' = b ,--
obtain

-0}, . Therefore we
(2p)

-2
TSip = (b1 +1)Si—10+ Zbési,o =S,k
i=1

i

Example 3.6. In Figure 2 if we take < 002 >—< 021 >—< 231 >—< 000 >
as the basic path of the O-tree, then the 9th state Ss ¢ at the level 3 is given by

S39=1<002>+4+2 <021 > +1 < 231 >=< 201 > .
Definition 3.7. The tree obtained by Theorem 3.5 is called the standard tree
of C.
4. Complemented GF(2) SACA

__ The next-state function of the complemented GF(27) SACA is given by ¥ =
TX = TX + F. For example, consider the 4-cell GF(2?) SACA C with the
following state transition matrix 7.

T —

O O NN
O NN O N
O N O
OO
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If we take the complement vector F = (3201)%, then the next state Y of the
current state X = (1203)" is Y = TX = (2020)*.

Lemma 4.1. Let C be a linear n-cell GF(2P) SACA and let C' be the comple-
mented GF(2P) SACA derived from C with the complement vector F whose level
is [(1 <1 < n) in the state transition diagram of C. Then T F is the attractor
of C'.

Proof. Since F lies at the level [ in C, T'F = 0 and thus
T(THF) - T[THF F(T 2+ T+ I)F]
= T[(TH + T2 +~--+T+I)F} +F
- TF4T ' F=T"'F.
Hence T' ' F is the attractor of C'. O

Theorem 4.2. Let C be a linear n-cell GF(2P) SACA and let C' be the com-
plemented GF(2P) SACA derived from C with the complement vector F whose
level is I(1 <1 <n). Then, in the state transition diagram of C’,

(a) all states at levels higher than [ in the state transition diagram of C remain
unaltered,

(b) all states at levels up to (I — 1) in the state transition diagram of C are
located in level [,

(c) some states at level I of C are rearranged in levels lower than | and the
other states at level I are located in the remaining part of level |,

(d) F lies at the level (I — 1).

Proof. (a) By Lemma 4.1, T 'F is the attractor of €’ and thus 7" 'F —
T F = = T 'F for k > 1. Let X be a state at level k(> ) of C. Then

T'X — TFX + (Tk_1+~~~+I)F

= Tk_lF( because T*X = 0)
- T 'F
Thus the level of X is at most k& in C’. And

T 'x = rh1x 4 (Tk—2+..-+T+I)F

— x4 T p
— TFIX 4T 'F
=+ T 'F because TF~1X + 0.

Hence X lies at level &k in C’.
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(b) Let W be a state at level i(< I) of C. Then
T'W =T"H""W=-..=T'W=0
And thus
TW=T'W+ (1" -t )P =T 'F
But
T 'w = T'wy (TH +- -~+I>F
— w4 T F
-2 -1
— T AT 'F
Since T' " F is the attractor of C’ by Lemma 4.1, W is on the level | of C’
(¢) Since the number of all states at levels up to [ — 1 is

1+ (2;0 — 1) 4+ 2p(2p _ 1) R (21’)1—2(210 . 1) _ (2p)l~1

the number of level [ states which are remained unaltered in C’ is (27)'~1(2P —1).
Hence the results of (¢} are obtained from (a) and (b).

(d) By (b) the state 0 is the level [ state in C. Since 70 = T0+ F = F, F lies
on the level [ — 1. 0

The following Table 2 shows the alteration of states of a linear SACA over
GF(27).

[Table 2] Alteration of the states of a linear GF(2°P) SACA

Linear GF(27) SACA Complemented GF(27) SACA
States at levels higher than level [ The level is unchanged
States at levels lower than level [ Rearranged at level [
Complement vector F F' lies at level (I — 1)
States at level [ Rearranged at levels lower than or equal to [

Theorem 4.3. Let C be a linear n-cell GF(2P) SACA and C' be the comple-
mented SACA derived from C with the given complement vector. Let S, —
Sn—1,0 — -+ — Spo(= 0) be the basic path in the standard tree of C and let
§n70 — §n71,0 — e — go,o be a basic path in C'. Then every state of the
remaining part can be expressed as the sum of the states which lie on the basic
path of C'.

Proof. Let S, 0 — Sp—1,0 — -+ — So,0(= 0) be the basic path in the standard
tree of C and let S, 0 — S;,—1 09> -+ — Sp o be a basic path in C'. In the state
transition diagram of C the kth state at the level [ is
-1
Sik = (b +1)Sp0 + Y biSio,
i=1

where k= biby_1 -+ brgry, 0 <k < (2P)!=1(27 — 1) by Theorem 3.5.
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Then the number of all states from level 1 to level n is given by

D@ NP - = @) -1

=1
Thus the number of all states of the state transition diagram in C’ including the
attractor is (2°)™ — 1 + 1 = 2P™. This is equal to the number of all states in C’.

Let
-1

Sie =510+ (b +1)Si0 + Z b;S; 0.
=1

Then we get
T —gl,k = T(gl’k) + F

-1
= T <§zl,o + (b +1)S;0+ Z biSi,O> +
i=1
o 1—2
= TSia0+F+(bi+1)S10+ Y bit1Sio
i=1
B -2
= Si20+ 1 +1)Si_10+ Z b.Si0
=1

= Sl*l,ka

k
where k' = {2—1)J =bb_q1-- ~b2(2,,) =b_,- ~b’1(2p).
Hence we can get the state transition diagram of C'. O

5. Algorithm for the tree construction of GF(2P) SACA

From Theorems 3.5, 4.2 and 4.3, we propose the following algorithm for the
construction of the state transition diagrams of GF(2P) SACA C and GF(2P)
SACA C' derived from C with a given complement vector F. This algorithm
does not hold for p = 1. This means that the construction algorithms for the
state transition diagram of the GF(27)(p > 1) SACA C and the state transition
diagram of the GF(2P)(p > 1) SACA C’ are different from the construction al-
gorithms for the state transition diagram of the GF(2) SACA C and the state
transition diagram of the GF(2) SACA C’ derived from a C with some comple-
ment vector.

Tree_Construction_Algorithm

/* Tree construction of a linear GF(2P) SACA C */
Step 1. Find a nonreachable state X in the 0-tree satisfying
T"X =0 and T"'X # 0, For the state transition matrix T of C
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Step 2. Find the following basic path of C by using X.
X(: Sn,()) — TX(: Snvl,O) — =0
Step 3. Construct the 0-tree by the equation
-1
Stk = (b +1)Sio+ Z b:Si 0-
i=1
/* Tree construction of the complemented GF(2P) SACA €’ derived from C
with the complement vector F */
Step 4. Find the basic path of C’ derived from C with complement vector
F.
If the complement vector F is a nonreachable state of C, then the
basic path of C’ is given by

0(=Sno) = TO(= Sp_10) = -+ > T 0(= So,0);
else the basic path of C’ is given by
X(=8p0) = TX(=Spn-1,0) = - — T X(= Sop),

where X is a nonreachable state in Step 1.
Step 5. Construct the tree of C' by using the equation

-1
Sik=S1—10+ (b +1)Si0 + Z bS5 0-

i=1
6. Conclusion

In this paper we analyzed the behavior of the state transition of the comple-
mented GF(27) SACA derived from a linear GF(2P) SACA.

And we proposed the algorithm for the construction of the state transition
diagram of GF(27) SACA by using the basic paths of a linear GF(2?) SACA C
and the complemented GF'(2P) C' SACA derived from C with some complement
vector. This algorithm reduced the time-complexity by changing multiplications
of matrices into additions of vectors. This work will be helpful for the generation
of CA based hashing functions by using a GF'(2?) SACA.
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