• Title/Summary/Keyword: Constructed wetlands

Search Result 232, Processing Time 0.027 seconds

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.

Assessment of the Wetland Soil Development in Constructed Wetlands using the Soil Properties of a Reference Wetland (기준습지 토양특성을 활용한 인공습지의 토양발달 평가)

  • Lee, Ja-Yeon;Kang, Dae-Seok;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • Changes in wetland soil properties of two constructed wetlands after their constructions were compared to those of a natural wetland to determine if they could be used for the evaluation of the success of constructed wetlands and the assessment of their functions. One natural wetland as a reference wetland and two constructed wetlands(treatment wetland and experimental wetland) with different contaminant inflow characteristics were selected for this study. Major physicochemical properties of wetland soil such as soil texture, water content, pH, CEC(cation exchange capacity), organic matter content, total nitrogen, and available phosphorus were monitored to investigate the effects of inundation and accumulation of organic matters and nutrients on the wetland soil development. There was a clear difference in soil texture between the natural wetland and the constructed ones, with the high sand content in the constructed wetlands as compared to the high clay content in the natural one. Gradual increases of silt and clay contents over time were observed in the constructed wetlands. The soil of the natural wetland was higher in water content and organic matter but lower in pH than those of the constructed wetlands. The pH of the constructed wetlands reached near neutral ranges after initial increase. CEC and nutrient concentrations of the constructed wetlands seemed to be affected mainly by outside inflows of organic matter and contaminants. Concentrations of organic matter and nutrients decreased over time in the experimental wetland where surface and deep soils with different characteristics were mixed during its construction, suggesting that changes in soil properties during wetland constructions may affect the development of wetland soils or wetland biogeochemistry. This study showed that changes in physicochemical properties of soils in constructed wetlands could be used to assess the success of constructed wetlands and their functions, and also the importance of reference wetlands for the appropriate assessment.

Evaluation of treatment efficiencies of pollutants in daecheong lake juwon stream constructed wetlands (대청호 주원천 인공습지의 오염물질 정화효율 평가)

  • Kim, Tae-Hun;Sung, Ki-Eun;Ha, Duk-Ho;Kim, Dong-Hee;Heo, Soon-Uk;Choi, Chung-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.211-222
    • /
    • 2015
  • This study focused on evaluating the efficiency of the removal of non-point source pollution by Daecheong Lake Juwon Stream constructed wetlands. The constructed wetland system is a surface flow type designed in the year 2007 for purifying eutrophic water of Daecheong Lake Juwon Stream. The value of conductivity, suspended solids(SS), chemical oxygen demand using a potassium permanganate($COD_{Mn}$), five-day biochemical oxygen demand($BOD_5$), total nitrogen(T-N), total phosphorous(T-P), and pH in inflow averaged 220.2, 2.46, 3.33, 1.34, 2.00, 0.04 mg/L and 7.24, respectively and in outflow averaged 227.9, 1.12, 3.34, 0.87, 1.16, 0.02 mg/L and 7.45, respectively. The average removal efficiency of constructed wetlands was 30 % for SS, 22 % for $BOD_5$, 45 % for T-N and 31 % for T-P. The removal rates of SS, $BOD_5$ and T-N in the spring, summer and autumn were higher than those in winter. The removal rate of T-P was not significant different in all seasons. The amounts of pollutants removal in the constructed wetlands were higher in the order of $3^{rd}$ < $2^{nd}$ < $1^{st}$ wetland for SS and T-P, $2^{nd}$ < $3^{rd}$ < $1^{st}$ wetland for $BOD_5$ and T-N. Therefore, our findings suggest that the constructed wetlands could well treat the eutrophic Daecheong Lake Juwon Stream waters.

Wastewater Utilization: A Place for Managed Wetlands - Review -

  • Humenik, F.J.;Szogi, A.A.;Hunt, P.G.;Broome, S.;Rice, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.629-632
    • /
    • 1999
  • Constructed wetlands are being used for the removal of nutrients from livestock wastewater. However, natural vegetation typically used in constructed wetlands does not have marketable value. As an alternative, agronomic plants grown under flooded or saturated soil conditions that promote denitrification can be used. Studies on constructed wetlands for swine wastewater were conducted in wetland cells that contained either natural wetland plants or a combination of soybeans and rice for two years with the objective of maximum nitrogen reduction to minimize the amount of land required for terminal treatment. Three systems, of two 3.6 by 33.5 m wetland cells connected in series were used; two systems each contained a different combination of emergent wetland vegetation: rush/bulrush (system 1) and bur-reed/cattail (system 2). The third system contained soybean (Glycine max) in saturated-soil-culture (SSC) in the first cell, and flooded rice (Oryza sativa) in the second cell. Nitrogen (N) loading rates of 3 and $10kg\;ha^{-1}\;day^{-1}$ were used in the first and second years, respectively. These loading rates were obtained by mixing swine lagoon liquid with fresh water before it was applied to the wetland. The nutrient removal efficiency was similar in the rush/bulrush, bur-reed/cattails and agronomic plant systems. Mean mass removal of N was 94 % at the loading rate of $3kg\;N\;ha^{-1}\;day^{-1}$ and decreased to 71% at the higher rate of $10kg\;N\;ha^{-1}\;day^{-1}$. The two years means for above-ground dry matter production for rush/bulrushes and bur-reed/cattails was l2 and $33Mg\;ha^{-1}$, respectively. Flooded rice yield was $4.5Mg\;ha^{-1}$ and soybean grown in saturation culture yielded $2.8Mg\;ha^{-1}$. Additionally, the performance of seven soybean cultivars using SSC in constructed wetlands with swine wastewater as the water source was evaluated for two years, The cultivar Young had the highest yield with 4.0 and $2.8Mg\;ha^{-1}$ in each year, This indicated that production of acceptable soybean yields in constructed wetlands seems feasible with SSC using swine lagoon liquid. Two microcosms studies were established to further investigate the management of constructed wetlands. In the first microcosm experiment, the effects of swine lagoon liquid on the growth of wetland plants at half (about 175 mg/l ammonia) and full strength (about 350 mg/l ammonia) was investigated. It was concluded that wetland plants can grow well in at least half strength lagoon liquid. In the second microcosm experiment, sequencing nitrification-wetland treatments was studied. When nitrified lagoon liquid was added in batch applications ($48kg\;N\;ha^{-1}\;day^{-1}$) to wetland microcosms the nitrogen removal rate was four to five times higher than when non-nitrified lagoon liquid was added. Wetland microcosms with plants were more effective than those with bare soil. These results suggest that vegetated wetlands with nitrification pretreatment are viable treatment systems for removal of large quantities of nitrogen from swine lagoon liquid.

Effect of Phosphorus Removal by Oyster Shell on Longevity of Constructed Wetlands (굴패각에 의한 인 처리가 인공습지의 수명에 미치는 영향)

  • Kim, Seong-Heon;Kim, Hong-Chul;Park, Jong-Hwan;Ryu, Seong-Ki;Kang, Se-Won;Cho, Ju-Sik;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.66-72
    • /
    • 2018
  • BACKGROUND: Constructed wetlands are low-cost alternatives for treating domestics sewage. However, previous study has reported that the removal of phosphorus in constructed wetlands was limited. Therefore, a new alternative was needed to extend the life of the constructed wetlands. The purpose of this study was to evaluate the effect of total phosphorus removal by oyster shell on longevity of constructed wetlands for treating domestic sewage. METHODS AND RESULTS: The changes of total phosphorus concentration and treatment efficiency in two constructed wetlands (CWs) classified as system A (coarse sand 100%) and system B (coarse sand 90%+oyster shell 10%) were investigated for 6 years. The actual saturation time of total phosphorus in the systems A and B was estimated to be longer than that of theoretical saturation by adsorption isotherm experiment. In particular, the saturation pattern of phosphorus in system A was maintained at a certain concentration level in the initial stage of operation, and finally saturation was reached as the saturation gradually progressed from the breaking point. In system B, the saturation period of phosphorus was prolonged as compared with system A due to the addition of oyster shells. CONCLUSION: Our results suggest that the longevity of the constructed wetlands can be extended due to the phosphorus saturation by adding the oyster shells to the coarse sands in constructed wetlands.

A Review of the Application of Constructed Wetlands as Stormwater Treatment Systems

  • Reyes, Nash Jett;Geronimo, Franz Kevin;Guerra, Heidi;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.162-162
    • /
    • 2022
  • Stormwater management is an essential component of land-use planning and development. Due to the additional challenges posed by climate change and urbanization, various stormwater management schemes have been developed to limit flood damages and ease water quality concerns. Nature-based solutions (NBS) are increasingly used as cost-effective measures to manage stormwater runoff from various land uses. Specifically, constructed wetlands were already considered as socially acceptable green stormwater infrastructures that are widely used in different countries. There is a large collection of published literature regarding the effectiveness or efficiency of constructed wetlands in treating stormwater runoff; however, metadata analyses using bibliographic information are very limited or seldomly explored. This study was conducted to determine the trends of publication regarding stormwater treatment wetlands using a bibliometric analysis approach. Moreover, the research productivity of various countries, authors, and institutions were also identified in the study. The Web of Science (WoS) database was utilized to retrieve bibliographic information. The keywords ("constructed wetland*" OR "treatment wetland*" OR "engineered wetland*" OR "artificial wetland*") AND ("stormwater*" or "storm water*") were used to retrieve pertinent information on stormwater treatment wetlands-related publication from 1990 up to 2021. The network map of keyword co-occurrence map was generated through the VOSviewer software and the contingency matrices were obtained using the Cortext platform (www.cortext.net). The results obtained from this inquiry revealed the areas of research that have been adequately explored by past studies. Furthermore, the extensive collection of published scientific literature enabled the identification of existing knowledge gaps in the field of stormwater treatment wetlands.

  • PDF

An Analysis of Suitable site of Constructed Wetland using High Resolution Satellite Image and GIS in Kyoung-An Stream (고해상도 위성영상과 GIS를 이용한 인공습지 적지 분석 -경안천을 대상으로-)

  • Koh, Chang-Hwan;Jin, Do;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2008
  • Various human activities such as the Urbanization and Industrialization are estimated the main factors to pollute the stream. Now days, numerous studies are carried out for managing non-point sources which have un-effect on water quality of streams by land-use and livestock. In case of Korea, a matter of concern that the management of Pal dang reservoir - the main water resources of the national capital region - has been occurring. Especially, large-scale constructed-wetlands are planned and constructed at the end of Kyoung-an stream. Additionally a lot of sewage treatment plants are newly installed and extended in this watershed. According to these efforts, water quality of Kyoung-an stream is predicted that would be improved. But the more detail and scientific analysis should be carried out for the water quality improvement, because, existing water quality improvement projects are not involved to analyze root of water quality deterioration and improvement plans. Therefore, this study aims to select suitable areas for constructed-wetlands and to calculate size of the constructed-wetlands for water quality improvement in Kyoung-an stream through the geographical pollutant distribution analysis and land-use pattern analysis by high resolution satellite image and suitable area analysis of constructed-wetlands by GIS(Geographic information system). The progress of this study is (1) to select maximum pollutant loaded area by geographical analysis based on water quality data, (2) to analyze land-use patterns using high resolution satellite image, (3) to select suitable areas of constructed-wetlands, (4) to calculate area and volume of chosen constructed-wetlands using GIS. Basically, sizes of constructed-wetlands are induced through the constructed-wetlands design index based on treatment ratio(provided by Korea Water Resources Corporation). As a result of this study, two areas are selected to construct constructed-wetlands. One of the area was $127,586m^2$ near by Yong-in sewage treatment plant, and the other area was $1,647m^2$ near by Ju-buk stream and Dae-dae stream.

  • PDF

Application of Free Water Surface Constructed Wetland for NPS Control in Livestock Watershed Area (축산단지 비점오염물질 저감을 위한 자유수면형 인공습지 적용)

  • Lee, Jeong-Yong;Kang, Chang-Guk;Lee, So-Young;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.481-488
    • /
    • 2011
  • Various development activities have lead to the destruction of the ecosystem such as natural wetlands. In order to protect these natural wetlands, the Ministry of Environment (MOE) in Korea enacted the Wetland Conservation Act in 1999 and designated protected areas for wetland conservation. The MOE adapted the use of Best Management Practices (BMP) such as retention ponds and constructed wetlands to treat the polluted water before entering the water system. One of these projects was a free-water surface flow (FWS) constructed wetland built as a secondary treatment unit for piggery wastewater effluent coming from a livestock wastewater treatment facility. Water quality monitoring for the constructed wetland was conducted during rainfall events. The results showed that the average removal efficiencies of TSS, BOD, TN, TP were 86, 60, 45, 70%, respectively. It was observed that the removal efficiency of particulate matter and phosphorus was high compared to nitrogen. Therefore, a longer hydraulic retention time was needed in order to improve the treatment efficiency of nitrogen. The results of this study can contribute to the wetland design, operation and maintenance of constructed wetlands.

Characteristics and Fate of Stormwater Runoff Pollutants in Constructed Wetlands (도시지역에 적용가능한 인공습지에서의 강우유출수 함유 오염물질의 거동과 특성)

  • Alihan, Jawara Christian;Maniquiz-Redillas, Marla;Choi, Jiyeon;Flores, Precious Eureka;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Nonpoint source (NPS) pollution continues to degrade the water quality. NPS pollutants signals high concerns against a sustainable environment. Low impact development (LID) is the leading management practice which regulates and treats stormwater runoff especially in highly impervious urban areas. Constructed wetlands are known to have efficient removal capability of NPS pollutants. Likewise, these LID facilities were intended to maintain the predeveloped hydrologic regime through series of mechanisms such as particle settling, filtration, plant uptake, and etc. In this study, the objective was to investigate the characteristics, fate and treatment performance of the two in-campus constructed wetlands (SW1 and SW2) which were installed adjacent to impervious roads and parking lots to treat stormwater runoff. A total of 42 storm events were monitored starting from July 2010 until November 2015. Manual grab sampling was utilized at the inlet and outlet units of each LID facilities. Based on the results, the wetlands were found to be effective in reducing 37% and 41% of the total runoff volume and peak flows, respectively. Aside from this, outflow EMCs were generally lower than the inflow EMCs in most events suggesting that the two wetlands improved the water quality of stormwater runoff. The average removal efficiency of pollutants in facilities were 63~79% in TSS, 38~54% in TN, 54% in TP and 32%~81% in metals. The results of this study recommend the use of constructed wetlands as efficient treatment facility for urban areas for its satisfactory performance in runoff and pollutant reduction.

Livestock Wastewater Treatment by a Constructed Wetland (인공습지를 이용한 축산폐수의 처리)

  • Park, Jae-hong;Choi, Eui-so;Cho, Il-hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.157-162
    • /
    • 2004
  • Constructed wetlands are considered as an important tool for wastewater treatment, wastewater management and flooding control. In addition, one of the most promising technologies for application in many countries seems to be constructed wetlands, due to their properties such as utilization of natural processes, simple construction, operation and maintenance, process stability, cost effectiveness, etc. This study considered possibility of treatment of livestock wastewater using a constructed wetland. The removal efficiencies of $COD_{cr}$, TOC, TN, TP, SS, and color were 97.6%, 96.6%, 97.0%, 96.7%, 99.0%, and 85.6%, respectively. In particular, SS was completely removed. However, $Cl^{-}$ concentration of the constructed wetland effluent was higher than that in influent. In conclusion, constructed wetlands could be applied to livestock wastewater treatment if $Cl^{-}$ would be properly treated. Further, it needs time for stabilization to reduce the pollutants which were accumulated in soil.