• Title/Summary/Keyword: Constructed wetland system

Search Result 124, Processing Time 0.024 seconds

A Pilot-Scale Study of Multiple Stage of Constructed Wetland Treatment System and Modeling for Nutrient Removal (Pilot 규모 연속배열형 인공습지의 영양염류 제거효능 규명 및 평가모델 연구)

  • Choi, Seung Il;Iamchaturapatr, Janjit;Rhee, Jae Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.781-788
    • /
    • 2010
  • A pilot study was performed to examine the feasibility of multiple stage of constructed wetland (CW) for nutrient removal. The system is composed of six wetland cells connected with water-ways. The hydraulic of wetland cells is designed as free water surface flow. The treatment capacity was $25m^3d^{-1}$ at HRT of about one day for each cell. The magnitude of nutrient removal was related with the length of wetlands and plant density. Total N and P removal rates were 1353 and $246mg\;m^{-2}d^{-1}$ respectively. The pilot-scale reactor was model as continuous flow system containing contribution of CSTR and PFR typed-reactors. The $k-C^*$ model equation was applied to predict N and P reduction. The result indicated the equation was well guided to estimate reduction of $NO_3-N$ and $PO_4-P$.

Stormwater treatment using Wetland and Pond (습지와 유수지를 이용한 강우 유출수 처리)

  • Ham, Jong-Hwa;Yoon, Chun-Gyeong;Koo, Won-Suk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.575-578
    • /
    • 2003
  • Constructed wetlands have become a popular technology for treating contaminated surface and wastewater. In this study, the field experiment to reduce nonpoint source pollution from watershed runoff during rainy day using wetland and pond. TSS and T-N removal rate of wetland-pond system and pond-wetland system was 91% and 73%, 94% and 70%, respectively and values were same range. $BOD_5$ and T-P removal rate of pond-wetland system (38% and 78%) was higher than wetland-pond system (27% and 62%). overall, pond-wetland system is more useful than wetland-pond system to control NPS.

  • PDF

Early Stage Performance of Constructed Wetland System for Nonpoint Source Pollution Control (비점원오염 제어를 위한 인공습지의 초기단계 연구)

  • Kim, Hyung-Chul;Ham, Jong-Hwa;Han, Jung-Yoon;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.481-488
    • /
    • 2006
  • The field scale experiment was performed to examine the performance of the constructed wetland for nonpoint source (NPS) pollution loading reduction. Four sets (0.88 ha each) of wetland and pond system were used. After three growing seasons of the wetland construction, plant coverage increased to about 90% even without plantation from bare soil surfaces at the initial stage. During the start up period of constructed wetlands, lower water levels should be maintained to avoid flooding newly plants, if wetland plants are to start from germinating seeds. The average removal rate of $BOD_5$, TSS, T-N and T-P during the first two years was 5.6%, 46.6%, 45.7%, and 54.8%, respectively. The $BOD_5$ removal rate was low and it might be attributed to the low influent concentration. The early stage of wetland performance demonstrated the effectiveness of water quality improvement and was satisfactory for treating polluted stream waters. From the first-order analysis, T-P was virtually not temperature dependent, and $BOD_5$ and TSS were more temperature dependent than T-N. A pond-wetland system was more effective than a wetland-pond or a wetland alone system in water quality improvement, particularly to reduce T-P. Overall, the wetland system was found to be an adequate alternative for treating a polluted stream water with stable removal efficiency and recommended as a NPS control measures.

Study on Natural Wastewater Treatment Systems by Constructed Wetland for Rural Area (인공습지에 의한 농촌오수처리에 관한 연구)

  • 윤춘경;권순국;김형중
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.55-63
    • /
    • 1997
  • Constructed wetland system which can be applied to the rural wastewater treatment system was examined by pilot plant in Kon-Kuk University. Hydraulic loading rate of wastewater was about 0.16m$^3$/m$^2$. day and theoretical detention time in the system was 1.38 days. The effluent of the septic tank for the school building was applied as inflow to the system. The influent concentration of DO was zero but effluent was up to 4.37mg/${\ell}$ which implies that oxygen was supplied enough from atmosphere by reaeration to support biological activity of the system. Average influent concentration of BOD was 104mg/${\ell}$ and effluent was 24mg/${\ell}$ with average removal rate of 76%. Average influent concentration of COD was 215mg/${\ell}$ and effluent was 63mg/${\ell}$ with average removal rate of 70 % . Average influent concentration of SS was 78mg/${\ell}$ and effluent was 10mg/${\ell}$ with average removal rate of 87%. Two components, BOD and SS, are regulated by law to keep maximum water quality standard of 80mg/${\ell}$ when daily outflow rate is less than 100$m^3$/day which is the case of most rural communities. Therefore, the results from the experiment showed that constructed wetland system can meet the water quality standard easily. Average influent concentration of total nitrogen was 165mg/lwhich is relatively higher than normal wastewater, and effluent was about 156mg/${\ell}$ with average removal rate of only 6%. Average influent concentration of total phosphorus was 41 mg/${\ell}$ and effluent was 6mg/${\ell}$ with average removal rate of 87%. Overall, constructed wetland system was thought to be effective to treat wastewater if nitrogen removal mechanism is improved. Considering low cost, less maintenance, and high treatability, this system can be a practical alternative for the wastewater treatment in rural area The experiment was performed during the summer and fall season, and treatment efficiency of the system is expected to decrease in low temperature. therefore, further study including temperature is required to evaluate feasibility of the system more in detail.

  • PDF

Treatment Efficiency of a Pond-Wetland System for the Water Quality Conservation of Estuarine Lake (담수호 수자원보전을 위한 수질정화 연못-습지 시스템의 초기처리수준)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.4
    • /
    • pp.64-71
    • /
    • 2001
  • Treatment efficiency was examined of a pond-wetland system constructed for water quality conservation of Koheung Estuarine Lake over one year after its establishment in July 2000. The system is composed of primary and secondary ponds in series and six wetland cells in parallel. Cattails (Typha angustiflora) were planted in three wetland cells and common reeds (Phragmites australis) in three other cells. Water pumped from Sinyang Stream flowing into the Lake was funneled into primary pond whose effluent was discharged into secondary pond by gravity flow. Effluent from secondary pond was distributed into each wetland cell. SS, $BOD_5$, T-N, and T-P concentrations in influent to primary pond, and effluent from primary pond, secondary pond, and three wetland cells planted with cattails were analyzed for about one year from August 2000 to August 2001. The removal rates at primary pond for SS, $BOD_5$, T-N and T-P were 29%, 30%, 15%, and 36%, respectively. The abatement rates at secondary pond for SS, $BOD_5$, T-N and T-P were 38%, 40%, 30%, and 47%, respectively. The reduction rates measured at three cattail-planted wetland cells for SS, $BOD_5$, T-N and T-P were 54%, 57%, 60%, and 68%, respectively. Considering early stage of the pond-wetland system and inclusion of winter during the research period, its treatment efficiency was rather good. Cattails had not yet grown to dense stands due to initial establishment period, which resulted in slightly lower treatment efficiencies of wetland cells for these pollutants, compared with those of ponds.

  • PDF

Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season (연못을 이용한 동절기 인공습지 오수처리수의 추가 처리)

  • Yoon, Chun-Gyeong;Jeon, Ji-Hong;Kim, Min-Hee;Ham, Jong-Hwa
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

Use of biochar to enhance constructed wetland performance in wastewater reclamation

  • Gupta, Prabuddha;Ann, Tae-woong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.21 no.1
    • /
    • pp.36-44
    • /
    • 2016
  • Constructed wetlands are established efficient technologies and provide sustainable solution for wastewater treatment. Similarly, biochar, which is an organic material, produced by means of pyrolysis, offers simple and low cost techniques to treat water and reduce carbon footprint. Combining both of these technologies can greatly augment the efficiency of the system. The objective of this study was to evaluate the efficiency of constructed wetlands by using biochar as media. Horizontal wetland beds with dimension ($1m{\times}0.33m{\times}0.3m$) were prepared using gravels and biochar, and cultivated with the Canna species. Synthetic wastewater was passed through these beds with average flow rate of $1.2{\times}10^{-7}m^3/sec$ achieving a retention time of three days. Pollutant removal performance was compared between the controlled and experimental wetland beds. This study reveals that the wetland with biochar were more efficient as compared to the wetland with gravels alone with average removal rate of 91.3% COD, 58.3% TN, 58.3% $NH_3$, 92% $NO_3-N$, 79.5% TP, and 67.7% $PO_4$.

Feasibility Study of Natural Systems for Sewage Treatment and Agricultural Reuse (자연정화방법에 의한 오수처리와 농업적 재이용 타당성 검토)

  • 윤춘경;정광욱;함종화;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.194-206
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent to agricultural reuse of reclaimed water. The constructed wetland and pond system was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the wetland system. The effluent of the wetland was used as an influent to pond systems. The influent concentrations of total coliform(TC), fecal coliform (FC), and E. coli were about $10^5$MPN/100 ml, and they were reduced to less than 10,000 MPN/100 ml on average after wetland treatments, showing over 95 % removal. And they were further reduced to less than 1,000 MPN/100 ml in average, showing over 85∼93 % removal after pond treatment. Turbidity and SS were improved effectively on average and their pond effluent concentration was about 4.5 NTU and 9.8 mg/L in average, respectively Average $BOD^5$ concentrations were also reduced substantially to 9.3 mg/L with about 83 % removal rate after wetland and pond treatment systems. Nutrients removal was relatively low and removal rate for T-N and T-P was less than 43 and 44%, respectively after wetland and pond treatment. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, pond system was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper describes a preliminary result Iron pilot study and further investigations are recommended on the optimum design parameters before full scale application.

Development of Pollutant Removal Model in the Artificial Wetland (인공습지의 수질개선 효과 분석모델 개발)

  • Choi, Ji-Yong
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 2002
  • The wetland is a biologically integrated system consisting of water, soil, bacteria, plants, and animals. The wetland helps sustain the ecosystem, control the micro-climate and flood, maintain the ground water level, and provide fishing grounds. From the environmental standpoint, the wetland plays a vital role in reducing water pollution by filtering out sand and other polluted matters, producing oxygen, absorbing chemicals and nutrients. For these reasons, interest in restoring the wetlands has been steadily increasing. Artificial wetland, which is also referred to as created wetland or constructed wetland, is an alternative to natural wetland. Like natural wetland, artificial wetland is environmentally friendly and can effectively lower pollutant levels. The Korea government is actively reviewing the construction of artificial wetlands in mining and water supply areas to decrease nonpoint pollutant sources. This paper attempts to develop a pollutant removal model for the water quality improvement function of artificial wetlands. Artificial wetland can improve the quality of the water; however, depending on the type of water inflow, vegetation and hydrology, its effect can be different.

  • PDF

Effect of Pollutant Loading and Flow Distance to Wastewater Treatment Efficiency in the Constructed Wetland System (오염부하량 및 유하거리가 인공습지에 의한 폐수처리 효율에 미치는 영향)

  • 김형중;김선주;윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.5
    • /
    • pp.97-108
    • /
    • 1997
  • Natural wastewater treatment systems using the constructed wetland system were evaluated for the wastewater from the industrial complex in rural areas. For the treatment of wastewater from the industrial complex in rural area, a pilot plant of the constructed wetland system was installed at Baeksuk agri-industrial complex in ChunahnCity, Chunchungnam-Do. The experiment with this pilot plants was performed for 1996 and 1997. Results of the study were summarized as follows. For the BOD and COD, when the pollutant loading of them was about 1 3.8g/$m^2$. day (the concentration was l24.0mg/${\ell}$) arid 24.4g/$m^2$.day(the concentration was 220.Omg/${\ell}$), the removal rate of them was high, 90.2% and 93.4%, respectively. For the SS, the effluent concentration was consistently lower than the water quality standard even though the influent concentration varied significantly, which showed that SS was removed by the system effectively which consist of soil and plants. For the T-N and T-P, when the influent pollutant loading of them were moderately high, 2.8g/$m^2$.day to 7.4g/$m^2$. day(concentration 25.0mg/${\ell}$ to 49.7mg/${\ell}$) for T-N and 1.0g/$m^2$.day to 2.6g /$m^2$.day(concentration 8.6mg/${\ell}$ to 14.7mg/${\ell}$) for T-P, the removal rate of them were 86.5% and 94.0%, respectively. The removal rate by the flow distance increased rapidly in the first 4m from the inlet zone, and gradually there after. The width of system was 2m. Overall, the result showed that constructed wetland system is a feasible alternative for the treatment of wastewater from industrial complex in rural areas. Compared to existing systems, this system is quite competitive because it requires low capital cost, almost no energy and maintenance, and therefore, very cost effective.

  • PDF