• Title/Summary/Keyword: Constraint Equations

Search Result 254, Processing Time 0.027 seconds

A NUMERICAL ALGORITHM FOR KINEMATIC ANALYSIS OF THE MACPHERSON STRUT SUSPENSION SYSTEM USING POINT COORDINATES

  • Attia, Hazem Ali
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.67-80
    • /
    • 2004
  • In the present paper, a numerical algorithm for the kinematic analysis of a MacPherson strut motor-vehicle suspension system is developed. The kinematic analysis is carried out in terms of the rectangular Cartesian coordinates of some defined points in the links and at the joints. The presented formulation in terms of this system of coordinates is simple and involves only elementary mathematics. The resulting constraint equations are mostly either linear or quadratic in the rectangular Cartesian coordinates. The proposed formulation eliminates the need to write redundant constraints and allows to solve a reduced system of equations which leads to better accuracy and a reduction in computing time. The algorithm is applied to solve the initial positions as well as the finite displacement, velocity and acceleration problems for the MacPherson strut motor-vehicle suspension system.

  • PDF

Vibration Characteristics of Curved Members Resting on Elastic Foundations (탄성지반 위에 놓인 곡선부재의 진동 특성)

  • 오상진;박광규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.788-793
    • /
    • 2004
  • The main purpose of this paper is to Investigate the free vibrations of circular curved members resting on nonhomogeneous elastic foundations. The governing differential equations derived in a previous paper are used. The governing equations are solved numerically to obtain frequencies. Hinged-hinged end constraint is considered in numerical examples. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters: the foundation rested ratio, the foundation parameter, the horizontal rise to span length ratio, the slenderness ratio, and the width ratio of the contact area between the member and the foundation.

  • PDF

A Modular Formulation for Flexible Multibody Systems Including Nonlinear Finite Elements

  • Kubler Lars;Eberhard Peter
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.461-472
    • /
    • 2005
  • A formulation for flexible multibody systems (MBS) is investigated, where rigid MBS substructures are coupled with flexible bodies described by a nonlinear finite element (FE) approach. Several aspects that turned out to be crucial for the presented approach are discussed. The system describing equations are given in differential algebraic form (DAE), where many sophisticated solvers exist. In this paper the performance of several solvers is investigated regarding their suitability for the application to the usually highly stiff DAE. The substructures are connected with each other by nonlinear algebraic constraint equations. Further, partial derivatives of the constraints are required, which often leads to extensive algebraic trans-formations. Handcoding of analytically determined derivatives is compared to an approach utilizing algorithmic differentiation.

Design Of Air-Distribution System in a Duct (취출구를 가진 덕트의 공기분배장치 설계)

  • Kang, Hyung-Seon;Cho, Byung-Ki;Koh, Young-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.954-960
    • /
    • 2007
  • The purpose of this paper is to obtain design method of air-distribution system. Air-distribution system is composed of blower, duct, diffusers and measuring equipment. The air-flow rate from each diffuser is not equal. The air-flow rate is calculated with the combined equations which are Bernoulli's equation, continuity equation and minor loss equations. Inlet condition and outlet condition are adapted in each duct system. Then square difference between function of maximum air-flow rate and minimum air-flow rate is used as an object function. Area of diffuser and velocity are established as constraints. To minimize the object function, the optimization method is used. After optimization the design variables are selected under satisfaction of constraints. The air-distribution system is calculated again with the result of optimized design variable. It is shown that the air-distribution system has the equal air-flow rate from diffusers.

Formulations of Linear and Nonlinear Finite Element for Dynamic Flexible Beam (유연보의 동역학 해석에 대한 선형 및 비선형 유한요소 정식화)

  • Yun Seong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.113-121
    • /
    • 2006
  • This paper established the dynamic model of a flexible Timoshenko beam capable of geometrical nonlinearities subject to large overall motions by using the finite element method. Equations of motion are derived by using Hamilton principle and are formulated in terms of finite elements using CO elements in which the nonlinear constraint equations are adjoined to the system using Lagrange multipliers. In the final formulation are presented Coriolis and Gyroscopic forces as well as linear and nonlinear stiffnesses effects for the forthcoming numerical computation.

Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension (현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발)

  • Jung Hongkyu;Kim Sangsup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

Free Vibrations of Double Hinged Curved Beams with Clothoid Transition Segment (Clothoid 완화곡선을 갖는 양단회전 곡선보의 자유진동)

  • 이병구;진태기;최규문;김선기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.391-397
    • /
    • 2001
  • This paper explores the free vibrations of double hinged curved beams with transition segment. In this study, the clothoid curve is chosen as the transition segment of beams. The differential equations governing free vibration of such beams are derived in which the effects of rotatory inertia and shear deformation are included. The Runge-Kutta method and Determinant Search method are used to perform the integration of differential equations and to compute natural frequencies, respectively. In numerical examples, the double hinged end constraint is considered. The lowest four natural frequencies are presented as functions of three non-dimensional system parameters: the slenderness ratio, shear parameter and stiffness parameter.

  • PDF

Free Vibrations of Horizontally Curved Beams (수평 곡선보의 자유진동 해석)

  • Lee, Byoung-Koo;Oh, Sang-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.151-156
    • /
    • 1996
  • The differential equations governing free, out of plane vibrations of horizontally curved beams are derived and solved numerically to obtain the natural frequencies and the mode shapes. The Runge-Kutta method and Regula-Falsi method are used to integrate the differential equations and to determine the natural frequencies, respectively. In nu- merical examples, the hinged-clamped end constraint is considered and four lowest frequency parameters are reported as functions of four non-dimensional system parameters: (1) opening angle, (2) slenderness ratio, (3) shear parameter and (4) stiffness parameter. Also, typical mode shapes of displacements and stress resultants are shown.

  • PDF

Analysis of Temperature Distribution of Solid and Gas in the Rotary Cooler (회전냉각기에서 고체와 가스의 온도분포해석)

  • 이만승;최주석;전철근
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.25-30
    • /
    • 2002
  • Heat transfer occurring in the rotary cooler was analyzed by applying a one-dimensional steady state. The temperature of inlet gas and the measured temperature of outlet gas were used as boundary conditions. Axial temperature distribution of solid, gas and wall were calculated by solving two differential equations and two algebraic equations under the constraint of two point boundary conditions and operating conditions. The temperatures of outer wall calculated in this study were in good agreement with those measured from running rotary cooler.

A Geometrical Approach to the Characteristic Analysis of Parallel Mechanism for Planar Task (평면 작업용 병렬 메카니즘의 특성 해석을 위한 기하학적 접근)

  • Song, Nak-Yoon;Cho, Hwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.158-166
    • /
    • 1998
  • This paper presents a geometrical approach to the characteristic analysis of parallel mechanism with free joints intended for use as a planar task robot. Solution of the forward and inverse kinematic problems are described. Because the mechanism has only three degree-of-freedom output, constraint equations must be generated to describe the inter-relationship between actuated joints and free joints so as to describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. and it is used for the solution of the forward kinematic equations by Newton-Raphson technique. Another Jacobian matrix was derived to describe the interrelationship between actuated joints and moving platform. The stiffness, velocity transmission ratio, force transmission ratio and dexterity of the mechanism are then determined based on this another Jacobian matrix. The geometrical construction of the mechanism for the best performance was investigated using the characteristic analysis.

  • PDF