A Modular Formulation for Flexible Multibody Systems Including Nonlinear Finite Elements

  • Kubler Lars (Institute of Applied Mechanics, University of Erlangen-Nuremberg) ;
  • Eberhard Peter (Institute B of Mechanics, University of Stuttgart, Pfaffenwaldring)
  • Published : 2005.01.01

Abstract

A formulation for flexible multibody systems (MBS) is investigated, where rigid MBS substructures are coupled with flexible bodies described by a nonlinear finite element (FE) approach. Several aspects that turned out to be crucial for the presented approach are discussed. The system describing equations are given in differential algebraic form (DAE), where many sophisticated solvers exist. In this paper the performance of several solvers is investigated regarding their suitability for the application to the usually highly stiff DAE. The substructures are connected with each other by nonlinear algebraic constraint equations. Further, partial derivatives of the constraints are required, which often leads to extensive algebraic trans-formations. Handcoding of analytically determined derivatives is compared to an approach utilizing algorithmic differentiation.

Keywords

References

  1. Arnold, M., 1998, 'Zur Theorie und zur Losung von Anfangswertproblemen fur Differentiell- Algebraische Systeme von Hoherem Index,' VDI-Fortschritt-Berichte, Series 20, No. 264, Dusseldorf: VDI-Verlag
  2. Bathe, K. -J., 1995, Finite Element Procedures, Englewood Cliffs: Prentice Hall
  3. Bischof, C., Roh, L. and Mauer, A., 1997, 'ADIC : An Extensible Automatic Differentiation Tool for ANSI-C,' Software-Practice and Experience, 27(12), pp. 1427-1456 https://doi.org/10.1002/(SICI)1097-024X(199712)27:12<1427::AID-SPE138>3.0.CO;2-Q
  4. Bischof, C. and Bucker, H., 2000, 'Computing Derivatives of Computer Programs, In : Modern Methods and Algorithms of Quantum Chemistry,' Proceedings, J. Grotendorst (editor), Julich : NIC Series, pp. 315-327
  5. Brenan, K., Campbell, S. and Petzold, L., 1989, The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations, New York : North Holland
  6. Eberhard, P., 2000, Kontaktuntersuchungen Durch Hybride Mehrkorpersystem / Finite Elemente Simulationen, Aachen: Shaker Verlag
  7. Eich-Soellner, E. and Fuhrer, C., 1998, Numerical Methods in Multibody Dynamics, Stuttgart : B.G. Teubner
  8. Gear, C., Leimkuhler, B. and Gupta, G., 1985, 'Automatic Integration of Euler-Lagrange Equations with Constraints,' Journal of Computational and Applied Mathematics, 12(13), pp. 77-90 https://doi.org/10.1016/0377-0427(85)90008-1
  9. Griewank, A., 2000, Evaluating Derivatives : Principles and Techniques of Algorithmic Differentiation, Philadelphia : SIAM
  10. Hairer, E. and Wanner, G., 1996, Solving Ordinary Differential Equations II, Berlin : Springer
  11. Hairer, E. and Wanner, G., 1999, 'Stiff Differential Equations Solved by Radau Methods,' Journal of Computational and Applied Mathematics, 111, pp. 93-111 https://doi.org/10.1016/S0377-0427(99)00134-X
  12. Hairer, E., Lubich, C. and Roche, M., 1989, 'The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods,' Lecture Notes in Mathematics, Vol. 1409, Berlin : Springer
  13. Kubler, L., Eberhard, P. and Geisler, J., 2003, 'Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping using Absolute Nodal Coordinates,' Nonlinear Dynamics, 34, pp. 31-52 https://doi.org/10.1023/B:NODY.0000014551.75105.b4
  14. Kubler, L., Eberhard, P. and Geisler, J., 2003, 'Flexible Multibody Systems with Large Deformations Using Absolute Nodal Coordinates for Isoparametric Solid Brick Elements,' Proceedings of the Design Engineering Technical Conferences & Computers and Information in Engineering Conference DETC 2003, September 2-6, Chicago, USA
  15. Kubler, L. and Eberhard, P., 2002, 'A Formulation for Flexible Multibody Systems with Mixed Cartesian and Relative Coordinates,' In : Proceedings of the NATO Advanced Study Institute on Virtual Nonlinear Multibody Systems by Schiehlen, W. and Valasek, M. (Eds.), June 23-July 3, Prague, pp. 113-120
  16. Lubich, C., 1991, 'Extrapolation Integrators for Constrained Multibody Systems,' Impact Compo Sci. Eng., 3, pp. 213-234 https://doi.org/10.1016/0899-8248(91)90008-I
  17. Lubich, C., Nowak, U., Pohle, U. and Engstler, C., 1995, 'Numerical Integration of Constrained Mechanical Systems using MEXX,' Mech. Struct. & Mach., 23, pp. 473-495
  18. Nikravesh, P., 1988, Computer-Aided Analysis of Mechanical Systems, Englewood Cliffs : Prentice Hall
  19. Schiehlen, W. and Eberhard, P., 2004, Technische Dynamik, Wiesbaden : B.G. Teubner
  20. Serban, R. and Haug, E., 1988, 'Analytical Derivatives for Multibody System Analysis,' Mechanics of Structures and Machines, 26, pp. 145-173
  21. Shabana, A., 1998, Dynamics of Multibody Systems, Cambridge : University Press
  22. Simeon, B., 1994, Numerische Integration Mechanischer Mehrkorpersysteme : Projizierende Deskriptorformen, Algorithmen und Rechenprogramme, VDI- Fortschritt-Berichte, Series 20, No. 130 Dusseldorf : VDI-Verlag
  23. Wriggers, P., 2001, Nichtlineare Finite-Element-Methoden, Berlin: Springer