• Title/Summary/Keyword: Constrained surface

Search Result 141, Processing Time 0.025 seconds

Effect of REM Addition on The Surface Tension and The Critical Temperature of The Immiscible Liquid Phase Separation of The 60%Bi-24%Cu-16%Sn alloy

  • Park, Joong-Chul;Min, Soon-Ki;Lee, Joon-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.111-114
    • /
    • 2009
  • For the fabrication of core-shell structure bimetallic lead-free solder balls, both the critical temperature ($T_{cr}$) for the phase separation of two immiscible liquid phases and the temperature coefficient of the interfacial tension between the two separated liquid phases are required. In order to obtain this information, the temperature dependence of the surface tension of 60%Bi-24%Cu-16%Sn(-REM) alloys was measured using the constrained drop method. The slope of the temperature dependence of the surface tension changed clearly at a critical temperature for the separation of two immiscible liquid phases. The critical temperature of the 60%Bi-24%Cu-16%Sn alloy was estimated to be 1097K. An addition of 0.05% Ce decreased the critical temperature to 1085K, whereas that of 0.05% La increased it to 1117K. It was found that the surface tension and its temperature coefficient of the 60%Bi-24%Cu-16%Sn alloy were slightly increased by the addition of 0.05% Ce and 0.05% La. In addition, additions of Ce and La increased the temperature coefficient of the interfacial tension.

Strain Response of Motor Axis as Variation of Shrink Fitting (전동기 회전축의 열박음 형상일 따른 변형 특성)

  • Woo, Byung-Chul;Jeong, Yeon-Hoo;Kang, Do-Hyun;Kim, Jong-Mun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.57-59
    • /
    • 2003
  • Shrink fitting is often used to constrain a conventional mechanical fasteners and fastening methods with temperature difference. Localized heating of the mating surface provides temporary expansion and allows slip fit assembly. The resulting interference fit exhibits exceptional strength without surface deformation at ambient temperatures. We studied an analysing method to find out a deformation of motor axis as variation of constrained method with shrink fitting.

  • PDF

Propeller Skew Optimization Considering Varying Wake Field (선체반류를 고려한 프로펠러 최적 스큐화)

  • 문일성;김건도;유용완;류민철;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.26-35
    • /
    • 2003
  • Propellers operating in a given nonuniform ship wake generate unsteady loads leading to undesirable stern vibration problems. The skew is known to be the most proper and effective geometric parameter to control or reduce the fluctuating forces on the shaft. This paper assumes the skew profile as either a quadratic or a cubic function of the radius and determines the coefficients of the polynomial function by applying the simplex method. The method uses the converted unconstrained algorithm to solve the constrained minimization problem of 6-component shaft excitation forces. The propeller excitation was computed either by applying the two-dimensional gust theory for quick estimation or by the fully three-dimensional unsteady lifting surface theory in time domain for an accurate solution. A sample result demonstrates that the shaft forces can be further reduced through optimization from the original design.

Dynamic Characteristics of Cylindrical Composite Panels With Surface Damping Treatments Using Full Layerwise Theory (완전층별변위이론에 근거한 표면감쇠처리된 원통형 복합적층 패널의 동적특성)

  • Seong, Tae-Hong;Lee, In;Oh, Il-Kwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.29-32
    • /
    • 2005
  • Based on the full layerwise displacement shell theory, vibration and damping characteristics of cylindrical sandwich panels are investigated. The transverse shear deformation and the normal strain are fully taken into account for structural damping modelling. Modal damping factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich beams. Present results shows that full layerwise theory can accurately predict vibration and damping characteristics of cylindrical composite panels with surface damping treatments and constrained layer damping. The viscoelastic materials depending on elevated temperature environment and exciting frequencies can be fully considered.

  • PDF

Heat Exchanger Optimization using Progressive Quadratic Response Surface Method (순차적 2 차 반응표면법을 이용한 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Kim, Yang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this study, the shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. To do this, a new sequential approximate optimization (SAO) is proposed and it is integrated with the computational fluid dynamics (CFD). In thermal/fluid systems for constrained nonlinear optimization problems, three fundamental difficulties such as high cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are confronted. To overcome these problems, the progressive quadratic response surface method (PQRSM), which is one of the sequential approximate optimization algorithms, is proposed and the heat sink is optimize by means of the PQRSM.

  • PDF

Shape Optimization for the EMF Harmonics Reduction of PM Type Synchronous Generators (영구자석 계자형 동기발전기의 고주파 저감을 위한 자기회로 최적설계)

  • Kim, Yeong-Gyun;Lee, Jae-Geon;Im, Yang-Su;Gang, Gyu-Hong;Hong, Jeong-Pyo;Jang, Gi-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.494-500
    • /
    • 2001
  • This paper presents the shape optimization to minimize the BEMF(Back Electro-Motive Force) harmonics of PM type synchronous generators. RSM(Response Surface Methodology) is well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. In this paper, RSM is used to find the optimal solution. The 2D-Finite Element Method is used to obtain the observer data of the BEMF and SQP(Sequential Quadratic Problem method) is used to solve the constrained nonlinear optimization problem.

  • PDF

Magnetic Circuit Design of BLDC Motor Using Response Surface Methodology (반응표면방법론을 이용한 BLDC 전동기의 자기회로 설계)

  • Lim, Yang-Soo;Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.904-906
    • /
    • 2001
  • This paper presents a magnetic circuit design procedure by using Response Surface Methodology(RSM) to determine initial and detail design parameters for reducing torque ripple in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variable Moreover, Sequential Quadratic Problem (SQP) method is used to solve the relsulting of constrained nonlinear optimization problem.

  • PDF

Approximate Optimization of the Power Transmission Drive Shaft Considering Strength Design Condition (강도 조건을 고려한 동력 전달 드라이브 샤프트의 근사최적설계)

  • Shao, Hailong;Lee, Jongsoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.186-191
    • /
    • 2015
  • Presently, rapidly changing and unstable global economic environments demand engineers. Products should be designed to increase profits by lowering costs and provide distinguished performance compared with competitors. This study aims to optimize the design of the power-transmission drive shaft. The mass is reduced as an objective function, and the stress is constrained under a constant value. To reduce the number of experiments, CCD (central composite design) and D-Optimal are used for the experimental design. RSM (response surface methodology) is employed to construct a regression model for the objective functions and constraint function. In this problem, there is only one objective function for the mass. The other objective function gives 1; thus, NSGA-II is used.

Effect of Capsule Shape on Heat Storage (캡슐 형상이 축열에 미치는 영향)

  • 정재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.964-971
    • /
    • 2002
  • A numerical investigation of the constrained melting of phase change materials within spherical-like capsule is presented. A single-domain enthalpy formulation is used for simulation of the phase change phenomenon. The solution methodology is verified with the melting process inside an isothermal spherical capsule. Especially, the effect of capsule shape on the heat storage is emphasized. Two shape parameters are considered from the real capsule shape showing good characteristics of heat storage and the effect of these parameters is examined. Early during the melting process, the conduction mode of heat transfer is dominant. Thus the capsule shape with large surface area is desirable. However, the capsule shape with large surface area plays negative role on the strength of buoyancy-driven convection that becomes more important as melting continues.

Optimization of BLDC Motor for Reduction of Cogging Torque Using Response Surface Methodology (반응표면방법론에 의한 BLDC 전동기의 코깅토크저감을 위한 최적화)

  • Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.647-649
    • /
    • 2000
  • This paper presents a optimization procedure by using Response Surface Methodology(RSM) to determine design Parameters for reducing cogging torque in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of these parameters. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

  • PDF