• Title/Summary/Keyword: Constitutive models

검색결과 391건 처리시간 0.027초

Constitutive models of concrete structures subjected to seismic shear

  • Laskar, Arghadeep;Lu, Liang;Qin, Feng;Mo, Y.L.;Hsu, Thomas T.C.;Lu, Xilin;Fan, Feng
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.627-645
    • /
    • 2014
  • Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed steel fiber concrete found by the panel tests have been implemented into a finite element program called Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and prestressed concrete structures. The developed finite element program was validated by tests on prestressed steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-story wall building under shake table excitations. The comparison of analytical results with test outcomes indicates good agreement.

Nonlinear Dynamic Analysis of RC Frames Based on Constitutive Models of Constituent Materials (재료의 구성모델에 따른 철근콘크리트 골조의 비선형 동적거동 특성 차이에 관한 연구)

  • Heo, YeongAe;Kang, Thomas H.K.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제17권4호
    • /
    • pp.1-8
    • /
    • 2013
  • Constitutive modeling of constituent materials is very important for reinforced concrete (RC) frames. Cyclic constitutive behavior of unconfined concrete, confined concrete and reinforcing steel should be well defined in fiber-based discretization of RC sections. This study performs nonlinear dynamic analyses of RC frame structures to investigate the sensitivity of seismic behavior of such frames to different constitutive models of constituent materials. The study specifically attempts to examine confinement effects in concrete modeling and degrading effects in steel modeling, which substantially affects the monotonic, cyclic and seismic responses of RC members and frames. Based on the system level analysis, it is shown that the response of non-ductile frames is less sensitive to confined concrete models while the modeling of reinforcing steel is quite influential to the inelastic response of both non-ductile and ductile frames.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

Dynamic Constitutive Equations of Auto-body Steel Sheets with the Variation of Temperature (II) - Flow Stress Constitutive Equation - (차체용 강판의 온도에 따른 동적 구성방정식에 관한 연구 (II) - 온도에 따른 동적 구성방정식 -)

  • Lee, Hee-Jong;Song, Jung-Han;Park, Sung-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제31권2호
    • /
    • pp.182-189
    • /
    • 2007
  • This paper is concerned with the empirical flow stress constitutive equation of steel sheets for an auto-body with the variation of temperature and strain rate. In order to represent the strain rate and temperature dependent behavior of the flow stress at the intermediate strain rates accurately, an empirical hardening equation is suggested by modifying the well-known Khan-Huang-Liang model. The temperature and strain rate dependent sensitivity of the flow stress at the intermediate strain rate is considered in the hardening equation by coupling the strain, the strain rate and the temperature. The hardening equation suggested gives good correlation with experimental results at various intermediate strain rates and temperatures. In order to verify the effectiveness and accuracy of the suggested model quantitatively, the standard deviation of the fitted result from the experimental one is compared with those of the other two well-known empirical constitutive models such as the Johnson-Cook and the Khan-Huang-Liang models. The comparison demonstrates that the suggested model gives relatively well description of experimental results at various strain rates and temperatures.

Modeling of an elastomer constitutive relation

  • Sung, Dan-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.1018-1021
    • /
    • 1988
  • This study is concerned with modeling an elastomer constitutive relation by utilizing the truncated Volterra series. Actual experimental data from the Instron Tester are obtained for combined input, i.e. constant strain rate followed by a constant strain input. These data are then estimated for step inputs and utilized for the truncated Volterra series models. One second order and one third order truncated Volterra series models have been employed to estimated the force-displacement relation which is one of the prominent properities to characterize the viscoelastic material. The third order Volterra series model has better results, compared with those of the second order Volterra series model.

  • PDF

Finite Element Analysis for Evaluating the Performance of RC Beams Strengthened with SFRP Coating (분사식 섬유보강 코팅으로 보강된 RC보의 성능평가를 위한 유한요소해석 연구)

  • Ha, Sung-Kug;Yang, Bum-Joo;Lee, Haeng-Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제22권6호
    • /
    • pp.579-585
    • /
    • 2009
  • In this paper, a series of finite element analyzes were carried out to evaluate the performance of the RC beams strengthened with sprayed fiber reinforced polymer(SFRP) coating. A damage constitutive model based on the micromechanical constitutive model(Lee, 2001) in conjunction with the damage models(Lee 등, 2000) for SFRP coating was implemented into the finite element code ABAQUS. The present prediction results were compared with experimental data(Ha, 2007; Ha 등, 2009) to assess the accuracy of the damage constitutive model. It was concluded from the comparative study that the computational model developed by implementing the damage constitutive model into ABAQUS is suitable for the prediction of the performance of RC beams strengthened with SFRP coating.

Verification for the Cyclic Shear Behavior of Rough Granite Joint Using Constitutive Equation (구성방정식을 이용한 거친 화강암 절리면의 주기전단거동 특성규명)

  • 김대상;박인준;이희석
    • Journal of the Korean Geotechnical Society
    • /
    • 제18권1호
    • /
    • pp.141-152
    • /
    • 2002
  • Although a number of constitutive models have been proposed to define the behavior of geotechnical materials including elastic, plastic, and dynamic response, flew numerical models have been developed for the cyclic shear behavior of rock joints or interfaces. Such realistic constitutive models play an important role in analyzing and predicting the response of joints under dynamic loads. The purpose of this research is to verify the constitutive model modified for rough granite joints based on Disturbed State Concept(DSC) model, which has been successfully verified with respect to other materials such as dry sand-steel interface and wet sand-concrete interface. Furthermore, DSC model is compared and verified with respect to cyclic shear tests and numerical analysis results based on Plesha model. Based on the results of this research, it can be stated that DSC model is capable of characterizing the cyclic shear behavior of rough granite joints under dynamic loads.

Modelling the critical state behaviour of granular soils: Application of NorSand constitutive law to TP-Lisbon sand

  • Antonio Viana da Fonseca;Fausto Molina-Gomez;Cristiana Ferreira;Julieth Quintero
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.317-328
    • /
    • 2023
  • The soil behaviour can be represented by numerical modelling of element testing using diverse constitutive models. However, not all constitutive models allow the simulation of the stress-strain response at the critical state in granular soils with both contractive and dilative behaviour. Moreover, the accuracy of these models depends highly on the quality of the experimental data used for their calibration. This study addresses the modelling of the critical state behaviour of an alluvial natural soil from the Lower Tagus Valley (south of Portugal), known as TP-Lisbon sand, using the NorSand constitutive law. For this purpose, a series of numerical simulations of element testing was carried out using two algorithms performed in Visual Basic (VB) and Fast Lagrangian Analysis of Continua (FLAC). Moreover, this study presents the characterisation of of NorSand parameters from an accurate experimental programme based on triaxial and bender element testing. This experimental program allowed defining: (i) the critical state locus, (ii) the stress-dilatancy, and (iii) the soil elasticity of TP-Lisbon sand -all fundamental to calibrate the contractive and dilative behaviour of such alluvial soil. The results revealed a good agreement between experimental data and NorSand simulations using VB and FLAC. Therefore, this study showed that the quality of laboratory testing procedures and its good interpretation enables NorSand constitutive law to capture representatively the non-associated plastic strains, often expressed by the state parameter, allowing a representation of soil behaviour of alluvial soils within the critical state soil mechanics framework for different state parameters.