• 제목/요약/키워드: Constitutive Relationships

검색결과 89건 처리시간 0.021초

Generalization and implementation of hardening soil constitutive model in ABAQUS code

  • Bo Songa;Jun-Yan Liu;Yan Liu;Ping Hu
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.355-366
    • /
    • 2024
  • The original elastoplastic Hardening Soil model is formulated actually partly under hexagonal pyramidal Mohr-Coulomb failure criterion, and can be only used in specific stress paths. It must be completely generalized under Mohr-Coulomb criterion before its usage in engineering practice. A set of generalized constitutive equations under this criterion, including shear and volumetric yield surfaces and hardening laws, is proposed for Hardening Soil model in principal stress space. On the other hand, a Mohr-Coulumb type yield surface in principal stress space comprises six corners and an apex that make singularity for the normal integration approach of constitutive equations. With respect to the isotropic nature of the material, a technique for processing these singularities by means of Koiter's rule, along with a transforming approach between both stress spaces for both stress tensor and consistent stiffness matrix based on spectral decomposition method, is introduced to provide such an approach for developing generalized Hardening Soil model in finite element analysis code ABAQUS. The implemented model is verified in comparison with the results after the original simulations of oedometer and triaxial tests by means of this model, for volumetric and shear hardenings respectively. Results from the simulation of oedometer test show similar shape of primary loading curve to the original one, while maximum vertical strain is a little overestimated for about 0.5% probably due to the selection of relationships for cap parameters. In simulation of triaxial test, the stress-strain and dilation curves are both in very good agreement with the original curves as well as test data.

응력경로(應力經路)에 따른 이방성(異方性) 점성토(粘性土)의 변형특성(變形特性) (Stress-Path Dependent Deformation Characteristics of Anisotropic Cohesive Soil)

  • 권오엽
    • 대한토목학회논문집
    • /
    • 제9권3호
    • /
    • pp.133-141
    • /
    • 1989
  • 과압밀성(過壓密性) 점성토(점성토)의 응력(應力)-변형(變形) 거동(擧動)은 일정한 응력수준(應力水準)에 이르기까지 거의 선형(線形)의 관계를 유지하는 경우가 많다. 본 연구(硏究)에서는, 이러한 지반(地盤)의 응력(應力)-변형(變形) 거동(擧動)을 추정하기 위하여 횡이방성(橫異方性) 탄성론(彈性論)을 도입하고, 이 이론(理論)에 필요한 탄성정수(彈性定數)를 등가매개변수(等價媒介變數)로 대치(代置)하는 새로운 방법(方法) 제안(提安)하였다. 이 방법(方法)은, 등방퇴적면(等方堆積面)과 연직방향(鉛直方向)의 공시체(供試體)로 임의의 두가지 응력경로(應力經路) 배수시험(排水試驗)에 의한 연직변형도(鉛直變形度) 측정만에 의해서도 매개변수(媒介變數)가 결정되는 특징을 가지고 있으며, 이 방법(方法)으로 결정된 등가매개변수(等價媒介變數)를 횡이방성탄성론(橫異方性彈性論)에 적용하여 추정한 응력(應力)-변형(變形) 거동(擧動)을 실험치(實驗値)와 비교(比較)한 결과 대체로 부합된 결과를 얻었다.

  • PDF

Simulation study on CFRP strengthened reinforced concrete beam under four-point bending

  • Zhang, Dongliang;Wang, Qingyuan;Dong, Jiangfeng
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.407-421
    • /
    • 2016
  • This paper presents numerical modeling of the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened RC (reinforced concrete) beams under four-point bending. Simulation of debonding at the CFRP-concrete interface was focused, as it is the main failure mode of CFRP strengthened RC beams. Here, cohesive layer was employed to model the onset of debonding, which further helps to describe the post debonding behavior of the CFRP strengthened RC beam. In addition, the XFEM approach was applied to investigate the effects of crack localization on strain field on CFRP sheet and rebar. The strains obtained from the XFEM correlate better to the test results than that from CDP (concrete damaged plasticity) model. However, there is a large discrepancy between the experimental and simulated loaddisplacement relationships, which is due to the simplification of concrete constitutive law.

슬립을 고려한 강합성 연속보의 장기거동해석 (Long-Term Behavior of Composite Continuous Beams With Flexible Shear Connectors)

  • 최동호;김호배;이동혁;고상은
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.141-149
    • /
    • 2000
  • This study performs the elastic and viscoelastic analysis of composite continuous beams with flexible shear connectors. Due to creep and shrinkage of the concrete part, the stress redistribution between the concrete slab and steel beam, and the evolution of the redundant restraint reaction occur with time. Using the equation of equilibrium, internal and external compatibility condition, and constitutive relationships, mathematical formulations are formulated. The solution is obtained by means of numerical step-by-step techniques and the finite difference method. Numerical parametric studies are performed to evaluate the stress redistribution, and the evolution of the redundant restraint reaction. The parameters include the stiffness and spacing of shear connectors, the age of concrete at loading, and the relative humidity.

  • PDF

과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석 (A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition)

  • 유남재;이명욱;박병수;이승주
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

유한요소법의 입자요소를 이용한 박판 성형해석 (Development of FE Analysis Scheme for Milli-Part Forming Using Grain Element)

  • 구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.439-442
    • /
    • 2003
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

  • PDF

불포화토의 거동예측을 위한 구성식 개발(I) -불포화토의 거동특성 연구- (Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Soil(I) -Study of Characteristics of Unsaturated Soil-)

  • 송창섭;장병욱
    • 한국농공학회지
    • /
    • 제36권4호
    • /
    • pp.87-94
    • /
    • 1994
  • The aim of the work descrihed in this paper is to study a characteristics of an unsaturated soil for the different matric suctions. To this end, a series of suction controlled isotropic and triaxial compression tests is conducted on silty sands. Matric suction is controlled by the axis translation technique using high air entry ceramic disk. Total volume change, air and water volume changes are measured by the device made for the experiment. The specimens are compacted using a half of Proctor compaction energy and with the water contents of 5% drier than the optimum moisture contents. Isotropic compression and triaxial compression tests are conducted on the specimen at each equilibrium state of matric suction. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated.

  • PDF

Numerical Study of Contaminant Transport Coupled with Large Strain Consolidation

  • 이장근
    • 한국농공학회논문집
    • /
    • 제50권2호
    • /
    • pp.45-52
    • /
    • 2008
  • Contaminant transport has been widely studied in rigid porous media, but there are some cases where a large volumetric stain occurs such as dewatering of dredged contaminated sediment, landfill liner, and in-situ capping. This paper presents a numerical investigation of contaminant transport coupled with large strain consolidation. Consolidation test was performed with contaminated sediments collected in Gary, Indiana, U.S. to obtain constitutive relationships, which are required for numerical simulations. Numerical results using CST2 show an excellent agreement with measured settlement and excess pore pressure. CST2 is then used to simulate contaminant transport during and after in-situ capping. Numerical simulations provide that transient advective flows caused by consolidation significantly increase the contaminant transport rate. In addition, the numerical simulations revealed that active capping with Reactive Core Mat (RCM) significantly decelerates consolidation-induced contaminant transport.

Construction sequence modelling of continuous steel-concrete composite bridge decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.123-138
    • /
    • 2006
  • This paper proposes a model for the analysis of the construction sequences of steel-concrete composite decks in which the slab is cast-in-situ for segments. The model accounts for early age shrinkage, such as thermal and endogenous shrinkage, drying shrinkage, tensile creep effects and the complex sequences of loading due to pouring of the different slab segments. The evolution of the structure is caught by suitably defining the constitutive relationships of the concrete and the steel reinforcements. The numerical solution is obtained by means of a step-by-step procedure and the finite element method. The proposed model is then applied to a composite deck in order to show its potential.

궤도차량과 토양의 상호관계에 대한 연구 (Study of the Interaction between a Tracked Vehicle and the terrain)

  • 박천서;이승종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.144-147
    • /
    • 2001
  • The planar tracked vehicle model used in this investigation consists of two kinematically decoupled subsystem, i.e., the chassis subsystem and the track subsystem. The chassis subsystem include the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints, In this paper, the recursive kinematic and dynamic formulation of the tracked vehicle is used to find the vertical forces and the distances of the certain track moved in the driving direction along the track. These distances and vertical forces obtained are used to calculate the sinkage of a terrain. The FEM is adopted to analyze the interaction between the tracked vehicle and terrain. The terrain is represented by a system of elements with specified constitutive relationships and considered as a piecewise linear elastic, plastic and isotropic material. When the tracked vehicle is moving with different speeds on the terrain, the elastic and plastic deformations and the maximum sinkage for the four different types of a isotropic soil are simulated.

  • PDF