• 제목/요약/키워드: Constitutive Equations

검색결과 439건 처리시간 0.024초

Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations

  • Kwon Youngdon
    • Korea-Australia Rheology Journal
    • /
    • 제16권4호
    • /
    • pp.183-191
    • /
    • 2004
  • High Deborah or Weissenberg number problems in viscoelastic flow modeling have been known formidably difficult even in the inertialess limit. There exists almost no result that shows satisfactory accuracy and proper mesh convergence at the same time. However recently, quite a breakthrough seems to have been made in this field of computational rheology. So called matrix-logarithm (here we name it tensor-logarithm) formulation of the viscoelastic constitutive equations originally written in terms of the conformation tensor has been suggested by Fattal and Kupferman (2004) and its finite element implementation has been first presented by Hulsen (2004). Both the works have reported almost unbounded convergence limit in solving two benchmark problems. This new formulation incorporates proper polynomial interpolations of the log­arithm for the variables that exhibit steep exponential dependence near stagnation points, and it also strictly preserves the positive definiteness of the conformation tensor. In this study, we present an alternative pro­cedure for deriving the tensor-logarithmic representation of the differential constitutive equations and pro­vide a numerical example with the Leonov model in 4:1 planar contraction flows. Dramatic improvement of the computational algorithm with stable convergence has been demonstrated and it seems that there exists appropriate mesh convergence even though this conclusion requires further study. It is thought that this new formalism will work only for a few differential constitutive equations proven globally stable. Thus the math­ematical stability criteria perhaps play an important role on the choice and development of the suitable con­stitutive equations. In this respect, the Leonov viscoelastic model is quite feasible and becomes more essential since it has been proven globally stable and it offers the simplest form in the tensor-logarithmic formulation.

다공질 금속의 비탄성거동을 위한 특수 구성방정식의 형성 I (Formulation of Special Constitutive Equations for Inelastic Responses of Porous Metals (I) - Elastic, Perfectly Plastic Material -)

  • 김기태
    • 대한기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.975-981
    • /
    • 1987
  • 본 연구에서는 제안된 특수 구성방정식으로 부터 얻은 이론치는 Shipman등에 의해 얻어진 정수압 압축및 1축 변형율 압축상태 하의 다공질 텅스텐의 실험치와 비교 하여 아주 잘 일치하였다.

A constitutive model for fiber-reinforced extrudable fresh cementitious paste

  • Zhou, Xiangming;Li, Zongjin
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.371-388
    • /
    • 2011
  • In this paper, time-continuous constitutive equations for strain rate-dependent materials are presented first, among which those for the overstress and the consistency viscoplastic models are considered. By allowing the stress states to be outside the yield surface, the overstress viscoplastic model directly defines the flow rule for viscoplastic strain rate. In comparison, a rate-dependent yield surface is defined in the consistency viscoplastic model, so that the standard Kuhn-Tucker loading/unloading condition still remains true for rate-dependent plasticity. Based on the formulation of the consistency viscoplasticity, a computational elasto-viscoplastic constitutive model is proposed for the short fiber-reinforced fresh cementitious paste for extrusion purpose. The proposed constitutive model adopts the von-Mises yield criterion, the associated flow rule and nonlinear strain rate-hardening law. It is found that the predicted flow stresses of the extrudable fresh cementitious paste agree well with experimental results. The rate-form constitutive equations are then integrated into an incremental formulation, which is implemented into a numerical framework based on ANSYS/LS-DYNA finite element code. Then, a series of upsetting and ram extrusion processes are simulated. It is found that the predicted forming load-time data are in good agreement with experimental results, suggesting that the proposed constitutive model could describe the elasto-viscoplastic behavior of the short fiber-reinforced extrudable fresh cementitious paste.

라체팅 거동에 대한 점소성 구성방정식 (Viscoplastic Constitutive Equations for Ratchetting Behavior)

  • 호광수
    • 소성∙가공
    • /
    • 제14권5호
    • /
    • pp.466-472
    • /
    • 2005
  • Inelastic deformation behavior of metals and alloys is considered rate dependent. Uniaxial ratcheting experiments performed by Ruggles and Krempl, and Hassan and Kyriakides exhibited that higher mean stress for a fixed stress amplitude resulted in higher ratchet strain within a rate independent framework and higher stress rate resulted in lower ratchet strain, respectively. These phenomena are qualitatively investigated by numerical experiments through unified viscoplasticity theory. The theory does not separate rate-independent plasticity and rate-dependent creep, and thus uses only one inelastic strain to describe inelastic deformation processes with the concept of the yield surface. The growth law for the kinematic stress, which is a tensor valued state variable of the constitutive equations, is modified to predict the linear evolution of long-term ratchet strain.

On the theory of curved anisotropic plate

  • Chiang, Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.741-759
    • /
    • 2006
  • A general theory which describes the elastic response of a curved anisotropic plate subjected to stretching and bending will be developed by considering the nonlinear effect that reflecting the non-flat geometry of the structure. By applying a newly derived $6{\times}6$ matrix constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures, the governing differential equations for a curved anisotropic plate is developed in the usual manner, namely, by consideration of the constitutive relation and equilibrium equations. Solutions are obtained for simply-supported boundary conditions and compared to corresponding solutions that neglecting the nonlinear effect in the analysis. The comparisons indicate that the nonlinear terms in the equations that caused by the curvature of the structure is crucial for the curved plate analysis. Under certain curved plate geometries the unreasonable results will be induced by neglecting the nonlinear effect in the analysis.

미세조직학적 변수를 고려한 합금의 구성모델링 (Constitutive Modelling of Alloys Implementing Microstructural Variables)

  • 김형섭;김성호;류우석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 2002
  • A unified elastic-viscoplastic ocnstitutive model based on dislocation density considerations is described. A combination of a kinetic equation, which describes the mechanical response of a material at a given microstructure in terms of dislocation glide and evolution equations for internal variables characterizing the microstructure provide the constitutive equations of the Model. Microstructural features of the material, such as the grain size, spacing between second phase particles etc., are directly implemented in the constitutive equations. The internal variables are associated with the total dislocation density in the simple version of the model. The model has a modular structure and can be adjusted to describe a particular type of metal forming processes.

  • PDF

Formulation for the Parameter Identification of Inelastic Constitutive Equations

  • Lee, Joon-Seong;Bae, Byeong-Gyu;Hurukawa, Tomonari
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.627-633
    • /
    • 2010
  • This paper presents a method for identifying the parameter set of inelastic constitutive equations, which is based on an Evolutionary Algorithm. The advantage of the method is that appropriate parameters can be identified even when the measured data are subject to considerable errors and the model equations are inaccurate. The design of experiments suited for the parameter identification of a material model by Chaboche under the uniaxial loading and stationary temperature conditions was first considered. Then the parameter set of the model was identified by the proposed method from a set of experimental data. In comparison to those by other methods, the resultant stress-strain curves by the proposed method correlated better to the actual material behaviors.

유한요소해석을 사용한 구성 방정식 피팅 시 변형률 속도 민감도 및 요소 크기의 영향 (Effect of Strain Rate Sensitivity and Mesh Size on Constitutive Equation Fitting Using Finite Element Analysis)

  • 구강희;김용주;서민홍;김형섭
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.200-206
    • /
    • 2022
  • The finite element analysis is one of the representative methods for predicting the materials behavior for experiments that are difficult to perform empirically. Constitutive equations are essential for reducing computation time and sharing data because they enable finite element analysis simulations through simple formulae. However, it is difficult to derive accurate flow curves for all materials as most constitutive equations are not formulated based on their physical meaning. Also, even if the constitutive equation is a good representation of the flow curve to the experimental results, some fundamental issues remain unresolved, such as the effect of mesh size on the calculation results. In this study, a new constitutive equation was proposed to predict various materials by modifying the combined Swift-Voce model, and the calculation results with various mesh sizes were compared to better simulate the experimental results.

동 하중에 대한 연강 재질의 변형율 속도 민감도 특성 연구 (Strain Rate Sensitive Behavior of Mild Steel Subjected to Dynamic Load)

  • 박종찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.377-382
    • /
    • 2004
  • The dynamic material characteristics on some mild steel sheets were observed. The dynamic tests were conducted on the ESH servo-hydraulic test machine. It was observed that the mechanical properties of mild steel are highly sensitive to the value of strain rate. The well known Cowper-Symonds constitutive equation was used to generalize the strain rate sensitivity effect. Modified constitutive equations were suggested to couple the strain hardening to the strain rate sensitivity. The dynamic stress-strain relationships for the mild steel sheets used in the present study were reasonably predicted using these modified constitutive equations.

  • PDF

Integration of Stress-Strain Rate Equations of CASM

  • Koh, Tae-Hoon
    • International Journal of Railway
    • /
    • 제3권4호
    • /
    • pp.117-122
    • /
    • 2010
  • In transportation geotechnical engineering, stress-strain behavior of earth structures has been analyzed by numerical simulations with the implemented plasticity constitutive model. It is a fact that many advanced plasticity constitutive models on predicting the mechanical behavior of soils have been developed as well as experimental research works for geotechnical applications in the past decades. In this study, recently developed, a unified constitutive model for both clay and sand, which is referred to as CASM (clay and sand model), was compared with a classical constitutive model, Cam-Clay model. Moreover, integration methods of stress-strain rate equations using CASM were presented for simulation of undrained and drained triaxial compression tests. As a conclusion, it was observed that semi-implicit integration method has more improved accuracy of capturing strain rate response to applied stress than explicit integration by the multiple correction and iteration.

  • PDF