• Title/Summary/Keyword: Constitutive Behavior

Search Result 805, Processing Time 0.03 seconds

A Constitutive Model using Anisotropic Bounding Surface Theory for Cohesive Soils (이방성 항복경계면 이론을 이용한 점성토정회원, 서울대학교 공과대학 토목공학과 조교수의 구성모델)

  • 김범상;정충기
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.95-106
    • /
    • 1996
  • In this study, a constitutive model which can describe the anisotropic and plastic behaviors of natural cohesive soils, was developed based on anisotropic bounding surface theory. The model was fomulated by the concepts of the improved anisotropic bounding surface function, nonassociated flow rule with new plastic potential function, anisotropic hardening rule, and new mapping rule governing the plastic behavior inside bounding sutraface. Comparing with the results of Ku consolidation and triaxial shearing tests, the predictions by the proposed model agree quite well with real soil responses.

  • PDF

Analysis of Deformation and Microstructural Evolution during ECAP Using a Dislocation Cell Related Microstructure-Based Constitutive Model (전위쎌에 기초한 미세조직 구성모델을 이용한 ECAP 공정 시 변형과 미세조직의 진화 해석)

  • Kim H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.207-210
    • /
    • 2004
  • The deformation behavior of copper during equal channel angular pressing (ECAP) was calculated using a three-dimensional version of a constitutive model based on the dislocation density evolution. Finite element simulations of the variation of the dislocation density and the dislocation cell size with the number of ECAP passes are reported. The calculated stress, strain and cell size are compared with the experimental data for Cu deformed by ECAP in a modified Route C regime. The results of FEM analysis were found to be in good agreement with the experiments. After a rapid initial decrease down to about 200 nm in the first ECAP pass, the average cell size was found to change little with further passes. Similarly, the strength increased steeply after the first pass, but tended to saturate with further pressings. The FEM simulations also showed strain non-uniformities and the dependence of the resulting strength on the location within the workpiece.

  • PDF

Differences on Tension, Compression JC Constitutive Equation Parameter of Strain Rate Effect for Ti-6Al-4V (Ti-6Al-4V 변형률 속도 변화에 따른 인장, 압축형 JC 구성방정식 변수의 변화)

  • Woo, Sang-Hyun;Lee, Chang-Soo;Park, Lee-Ju
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • This paper is concerned with a test method that can be used to investigate the parameters of the Johnson-Cook constitutive model. These parameters are essential for accurately analyzing material behavior under impact loading conditions in numerical simulation. Ti-6Al-4V alloy (HCP crytal structure) was used as a specimen for the experiments. In the $10^{-3}-10^3/s$ strain rate range, three types of experimental methods (convention, compression and tension) were employed to compare the differences using MTS-810, SHPB and SHTB. Finite element analysis results when applying these parameters were displayed along with the experiment results.

Mathematical Properties of the Differential Pom-Pom Model

  • Kwon, Youngdon
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.164-170
    • /
    • 2001
  • Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for the simplified differential version of these constitutive equations. It is proved that they are globally Hadamard stable except for the case of maximum constant backbone stretch (λ = q) with arm withdrawal s$\_$c/ neglected, as long as the orientation tensor remains positive definite or the smooth strain history in the now is previously given. However this model is dissipative unstable, since the steady shear How curves exhibit non-monotonic dependence on shear rate. This type of instability corresponds to the nonlinear instability in simple shear flow under finite amplitude disturbances. Additionally in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady now curves, the constitutive equations will possibly violate the positive definiteness of the orientation tensor and thus become Hadamard unstable.

  • PDF

Analyses of Large Deformation Problems in Geotechnical Engineering using Particle Method (입자법을 이용한 지반공학 대변형 문제 해석)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1090-1094
    • /
    • 2009
  • Many problems in geotechnical engineering such as slop failure, debris flow, ground heaving due to embankment, and lateral flow caused by liquefaction are related to large deformation rather than small deformation. Traditional numerical methods such as finite element and finite difference methods have a difficulty to solve such large deformations because they use grids. A particle method was developed for fluid dynamics. The particle method can solve large deformation problems because it uses particles to discretize differential equations. It can also include soil constitutive model and thus solve soil behavior on various boundary conditions. In this study, a particle method, which is based on particles rather than grids, is introduced and used to simulate large deformation including soil failure. The developed method can be applied for various large deformation problems in geotechnical engineering because it incorporates soil constitutive models.

  • PDF

The high-rate brittle microplane concrete model: Part I: bounding curves and quasi-static fit to material property data

  • Adley, Mark D.;Frank, Andreas O.;Danielson, Kent T.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.293-310
    • /
    • 2012
  • This paper discusses a new constitutive model called the high-rate brittle microplane (HRBM) model and also presents the details of a new software package called the Virtual Materials Laboratory (VML). The VML software package was developed to address the challenges of fitting complex material models such as the HRBM model to material property test data and to study the behavior of those models under a wide variety of stress- and strain-paths. VML employs Continuous Evolutionary Algorithms (CEA) in conjunction with gradient search methods to create automatic fitting algorithms to determine constitutive model parameters. The VML code is used to fit the new HRBM model to a well-characterized conventional strength concrete called WES5000. Finally, the ability of the new HRBM model to provide high-fidelity simulations of material property experiments is demonstrated by comparing HRBM simulations to laboratory material property data.

Constitutive models of concrete structures subjected to seismic shear

  • Laskar, Arghadeep;Lu, Liang;Qin, Feng;Mo, Y.L.;Hsu, Thomas T.C.;Lu, Xilin;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.627-645
    • /
    • 2014
  • Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed steel fiber concrete found by the panel tests have been implemented into a finite element program called Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and prestressed concrete structures. The developed finite element program was validated by tests on prestressed steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-story wall building under shake table excitations. The comparison of analytical results with test outcomes indicates good agreement.

Pore Water Pressure Behavior due to Undrained Creep of Saturated Clay (포화점성토의 비배수 CREEP 성질에 의한 공극수압의 거동)

  • 강우묵;조성섭;지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.38-50
    • /
    • 1988
  • carried out to present a rheology model which is able to treat time-dependent properties of clay. The results were summarized as follow ; 1. The slope (a(e1)) of deviator stress in strain rate test was independent on axial strain, and pore water pressure was decreased with increment of strain rate. 2. The pore water pressure in a stress relaxation condition was not changed when the strain rate before stress relaxation was 0.05%/min., but it was increased with increment of time when the strain rate before stress relaxation was 0.2%/min 3. The greater the stress condition (q/qmax) and the strain rate before creep test became, the greater the increment rate of axial strain in creep test became. 4. SEKIGUCHI's constitutive equation was slightly overpredicted while empirical equation proposed in the study was well coincided with measured values. 5. The constitutive equation induced by a strain function could be dealed with a behavior of the pore water pressure increased with increment of elapsed time after primary consolidation.

  • PDF

Stage 1 compaction behavior of tool steel under die pressing (금형압축 하에서 공구강 분말의 1단계 압축거동)

  • Kim, Gi-Tae;Kim, Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1073-1080
    • /
    • 1997
  • The stage 1 compaction behavior of tool steel powder under die pressing was studied. The friction effects between the powder and the die wall under different die pressing modes were also investigated. The elastoplastic constitutive equations based on the yield functions by Fleck et al. and by Shima and Oyane were implemented into a finite element program to simulate die compaction processes. Finite element calculations were compared with experimental data for densification and density distribution of tool steel powder under single and double action die pressing. Finite element calculations using the yield function by Fleck et al. agreed better with experimental data than by Shima and Oyane.

Fundamental thermodynamic concepts for the constitutive modeling of damaged concrete

  • Park, Tae-Hyo;Park, Jae-Min;An, Tae-Song
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.648-651
    • /
    • 2004
  • Many damage models has been developed to express the degradation of materials. However, only minor damage model for concrete has been developed because of the heterogeneity of it unlike metals. To model the damaged behavior of concrete, this peculiarity as well as a load-induced anisotropic feature must be considered. In this paper, basic concepts of the thermodynamic theory is investigated to model the behavior of the damaged concrete in the phenomenological viewpoint. And the general constitutive relations and damage evolution equations are investigated too.

  • PDF