• Title/Summary/Keyword: Constituent materials

Search Result 348, Processing Time 0.026 seconds

Hardness of Constituent Phases in Ti(C0.7N0.3)-WC-Ni Cermets Measured by Nanoindentation (나노인덴테이션으로 측정한 Ti(C0.7N0.3)-WC-Ni 써멧 구성상의 경도)

  • Kim, Seong-Won;Kim, Dae-Min;Kang, Shin-Hoo;Kim, Hyeong-Jun;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.116-121
    • /
    • 2009
  • The constituent phases in Ti($C_{0.7}N_{0.3}$)-xWC-20Ni (wt%, x=5, 15, 25) cermets were characterized using nanoindentation in conjunction with observation of microstructure. The microstructure of cermet is composed of hard phase and binder phase, which gave rise to a wide range of hardness distribution when nanoindentation was carried out on the polished surface of cermets. Because of the inhomogeneous nature of cermet microstructure, observation of indented surface was indispensable in order to separate the hardness of each constituent phase. The measured values of hardness using nanoindentation were ${\sim}14\;GPa$ for the binder phase and ${\sim}24$ to 28 GPa for the hard phase, of which nanoindentation hardness was decreased with the addition of WC into Ti($C_{0.7}N_{0.3}$)-Ni system. In addition, the nanoindentation hardness of Ni binder phase was much higher than reported Vickers hardness, which could result from confined deformation of binder phase due to the surrounding hard phase particles.

The Type of Appeal and Constituent Unit's Expression of Apparel Advertising Appeared in Women's Magazines (I) (여성 잡지 의류광고 구성요소의 표현 형식과 소구유형 고찰(I))

  • 홍성순;황춘섭
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.5
    • /
    • pp.716-726
    • /
    • 1994
  • The present study was conducted to analyze the type of appeal and constituent unit's expression of apparel advertising appeared in women's magazine through content analysis. The research questions raised for this study were: (1) Are there any differences in the type of appeal between outwear and uderwear, men's and women's outwear, and formal wear and casual wear advertising ? (2) Are there any differences in the type of appeal and constituent unit's expression of apparel advertising between the late of 1980's and the begining of 1990's ? "Women Sense", founded on August 1988, was used as research materials for the study. And the period of analysis was from September 1988 to March 1993. In order to reduce biases of monthly issues in magazine, the apparel advertisements for analysis were selected from March, June, September and December issues. A total of 348 apparel advertisements were analyzed. The data gethered were analyzed using the frequency table, percentage and chi-square test. The results were as follows: 1. The emotional appeal was used more often for apparel advertisements. 2. There was no difference in types of appeal between men's and women's outwear. Both of them frequently used emotional appeal type 3. Rational appeal and sex appeal type were used more frequently in underwear advertising than in outwear advertisements. 4. It was emotional appeal type that usually used in both formal and casual wear advertising, and sex appeal was employed more often in casual wear advertising than in formal wear advertising. 5. Romantic appeal was employed more aften in the late of 1980's than in the begining of 1990's. Sex appeal and rational appeal were used more often in the beginning of 1990's than in the late of 1980's. 6. Emotional (28.7%) and Assertion Propose Headlines (21.6%) were popular in the late of 1980's. 7. Brand Name Headline was shown most often in the begining of 1990's. 8. Emotional, Factual and Mixed Copies were generally used at all types of bodycopy. while there was no difference in types of bodycopy between the periods. 9. Direct Approach, that a model introduced advertising goods to consumer, was mainly used in illustration. There was no difference in different types of illustration between the periods.

  • PDF

Research Trends of High-entropy Alloys (고엔트로피 합금의 연구동향)

  • Park, Pureunsol;Lee, Ho Joon;Jo, Youngjun;Gu, Bonseung;Choi, Won June;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.515-527
    • /
    • 2019
  • High-entropy alloys (HEAs) are generally defined as solid solutions containing at least 5 constituent elements with concentrations between 5 and 35 atomic percent without the formation of intermetallic compounds. Currently, HEAs receive great attention as promising candidate materials for extreme environments due to their potentially desirable properties that result from their unique structural properties. In this review paper, we aim to introduce HEAs and explain their properties and related research by classifying them into three main categories, namely, mechanical properties, thermal properties, and electrochemical properties. Due to the high demand for structural materials in extreme environments, the mechanical properties of HEAs including strength, hardness, ductility, fatigue, and wear resistance are mainly described. Thermal and electrochemical properties, essential for the application of these alloys as structural materials, are also described.

Influence of Heat Input and Weld Bead Composition on Welding Property in the Laser Welding between Sintered Segment and Mild Steel Shank (소결체와 저탄소강의 레이저용접 특성에 미치는 입열량 및 용접부 성분변화의 영향)

  • Jung Woo-Gwang;Cho Nam-Joon;Kim Sung-Wook;Lee Chang-Hee;Kim Sung-Dea;Lee Joo-Hyung;Park Hwa-Soo
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.425-431
    • /
    • 2004
  • A laser welding was applied between sintered tip of Fe-Co-W and low carbon steel shank for the diamond saw blade. The welding characteristics and formation of defects were investigated carefully for the weld fusion zone in different welding condition. Dendrite arm spacing in weld bead decreased with decrease of heat input. Co and W increased and Fe decreased in the weld fusion zone with increase of the heat input. The corresponding change of composition was observed with the change of beam position. The maximum and total length of crack decreased with increase of the heat input. The crack in weld bead was propagated along the dendrite boundary and was caused mainly by the segregation of constituent during the solidification.

Engineering characteristics and field demonstrations of solidified sludges (고형화 슬러지의 공학적 특성 및 현장적용성 분석)

  • 고용국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.593-596
    • /
    • 2003
  • The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride, thus is friendly to the environment, and has a function of soil-cement-agent solidification. In this study, a series of laboratory and field experiments including unconfined compressive strength, permeability, pH test, constituent analysis, leaching test were carried out to analyse engineering and environmental characteristics of solidified sludge. The results of this research showed that the solidified sludge could be efficiently used in covering, filling, and planting materials.

  • PDF

Fabrication Condition for Single Phase of Bi-superconductor Thin Film

  • Ahn, Joon-Ho;Park, Yong-Pil;Wang, Jong-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.11-14
    • /
    • 2001
  • Phase intergrowth in BSCCO thin films has been Investigated. It turfed out from XRD analyses of these phases that molar fraction of each constituent phase in the intergrowth thin film can be exhibited as a function of substrate temperature and ozone pressure. Super- conducting behavior of the intergrowth thin aim Is also discussed.

  • PDF

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture (액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동)

  • Lee, Ho-Suk;Lee, Kyu-Hee;Oh, Sung-Tag;Kim, Young Do;Suk, Myung-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.336-339
    • /
    • 2018
  • A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites (2-D Braided Textile 금속복합재료의 성형과 특성 해석)

  • 이상관;김효준;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

Elastic Model of Twisted Yarn Composites (Twisted Yarn 복합재료의 탄성계수 예측모델)

  • 변준형;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.57-60
    • /
    • 2002
  • The stiffness model has been proposed to predict elastic constants of twisted yarn composites. The model is based upon the unit cell structure, the coordinate transformation, and the volume averaging of compliance constants for constituent materials. For the correlation of analytic results with experiments, composite samples of various yarn twist angle were tested. The samples were fabricated by the RTM process using glass yarns and epoxy resin. The correlations of elastic constants showed relatively good agreements. The model provides the predictions of the three-dimensional engineering constants, which are valuable input data for the analytic characterization of textile composites made of twisted yarn.

  • PDF