• Title/Summary/Keyword: Constant-volume combustion chamber

Search Result 161, Processing Time 0.022 seconds

The effect of ignition position on combustion in the chamber with swirl flow (선회류가 있는 연소실의 연소에 미치는 점화위치의 영향)

  • 이종태
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.42-53
    • /
    • 1988
  • The effects of ignition position on combustion in a chamber with swirl flow were investigated by use of hot wire anemometer, high speed schlieren photography, and chamber pressure measurement. In experiments, the closed-constant volume combustion chamber was used, and the swirl was formed unsteadily by suction of external fluid after reducing pressure in the chamber. Results show that the effect of ignition position on combustion depends on the flow state and the flame propagation distance corresponding to each ignition position. Also, the effect of combustion promoting increases as an ignition position moves from the center of chamber to the outside, but maximum burning pressure was obtained at the position that is the shortest flame propagation distance.

  • PDF

A Experimental/Numerical Study of Behaviors of Spray Impinging on the Diesel Combustion Chamber Wall (디젤 연소실 벽면에 충돌하는 분무거동에 관한 실험적/수치적 연구)

  • 박정규;원석규;원영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.86-95
    • /
    • 2000
  • A modified spray impingement model has been developed, which is assessed against experiments for the impinging sprays on the small combustion chamber at various gas pressures. To investigate spray behaviors in the diesel combustion chamber, a transparent constant-volume chamber is made which is similar to the combustion chamber of the real diesel engine. The chamber is pressurized by N2 gas from 0 bar to 20 bar to find the effects of ambient pressures. The behaviors of spray injected into this chamber and dispersed after impingement on the cylinder wall is measured two-dimensionally using laser sheet Mie scattering method. The physical submodels have been properly modified to improve the prediction capability of original KIVA code to describe the spray behaviors after impingement on the curved cylinder wall. In terms of spray dynamics and evolution. numerical results give qualitatively good agreements with experimental data.

  • PDF

Measurements of Equivalence Ratio in the Spark Plug Gap and Its-Effects on Combustion Under Stratified Mixture Conditions in a Constant Volume Chamber (정적 연소실에서 성층화된 혼합기 조건하의 점화 전극사이 당량비 측정과 연소 특성에 미치는 영향)

  • Bae, Sang-Su;Lee, Gi-Cheol;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1311-1317
    • /
    • 2001
  • To investigate only the effects of the stratified mixture distribution on initial flame propagation and combustion characteristics, the instantaneous equivalence ratio in the spark plug gap and combustion pressure were measured simultaneously In a constant volume chamber, To induce the stratified propane-air mixture distribution near the spark plug, counter-flow typed mixture injection system was used under the constant mean equivalence ratio $\Phi$$\_$mean/= 1.0 The instantaneous equivalence ratio was measured by a single-shot Raman scattering with narrow-band KrF excimer laser. The measuring error was within the limit of $\pm$ 3.5% provided that the proposed method was applied to the measured Raman signals. Judging from mass fraction burned derived from the measured pressure, the optimum combustion characteristics were shown under the condition that the local equivalence ratio in the spark plug was near 1.28$\pm$0.04, and these characteristics were more remarkable at the initial stage of combustion.

An experimental study on the ignition characteristics of an air-assisted gasoline injector in a constant volume combustion chamber (정적 연소실 내에서의 2유체 가솔린 분사기의 착화 특성에 대한 실험적 연구)

  • 이용표;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.31-38
    • /
    • 1992
  • The objective of this study is to determine the ignition feasibility of a single shot, air-assisted gasoline fuel injector operated in a constant volume combustion chamber under atmospheric condition. A number of parameters has been selected for this experiments, such as dwelling time, spark gap position(r,z), spark electrode geometry, supplied air and fuel masses and spray cone deflector angle. On-site visual inspection of the instantaneous flame glow was chosen as one way to judge the successful ignition. In addition, chamber pressure and occasional photography were mobilized as for data recording. It was clearly observed that there was an entrainment air-fuel mixture toward spray axis from the spray formation and its development later on. The optimum ignition conditions were found for those parameters given above.

  • PDF

A Study on the Auto-ignition Combustion Characteristics of CH4-Air Pre-mixtures in Constant Volume Combustion Chamber (정적연소기를 이용한 메탄-공기 예혼합기의 자발화 연소특성에 관한 연구)

  • Lee, Jin-Soo;Lee, Hae-Chul;Cha, Kyung-Ok;Jung, Dong-Soo
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.41-47
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And. it is extremely difficult to increase gasoline engine efficiency and to reduce NOx and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper. internal EGR(exhaust gas recirculation) effect is suggested to realize CAI combustion. An experimental study was carried out to achieve CAI combustion using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). A flame trap was used to simulate internal EGR effect and to increase flame propagation speed in the CVCC. Flame propagation photos and pressure signals were acquired to verify internal EGR effect. Flame trap creates high speed burned gas jet. It achieves higher flame propagation speed due to the effect of geometry and burned gas jet.

  • PDF

RADICAL IGNITION TECHNIQUE IN A CONSTANT VOLUME CHAMBER

  • Park, J.S.;Ha, J.Y.;Yeom, J.K.;Lee, J.S.;Lee, C.J.;Chung, S.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.269-274
    • /
    • 2007
  • A prior fundamental study was executed using a constant volume chamber (CVC) to improve the burning characteristics of lean pre-mixture by the injection of active radicals generated in the sub-chamber of the CVC. The Radical ignition (RI) technique shows remarkable progress in the burning velocity and combustible lean limit compared with the results of the spark ignition (SI) technique. The optimum design value of the sub-chamber geometry is near $0.11cm^{-1}$ for the ratio of the total area of the holes to the sub-chamber volume $(A_h/V_s)$. In this study, based on the former experimental results, the additional works have been performed to examine the effects of the geometry change in the number $(N_h)$, the total section area $(A_h)$, and diameter $(D_h)$ of the passage holes on the combustion characteristics in the CVC. Also ambient conditions such as the initial temperature and the initial pressure of the mixture were selected as experimental parameters and the effects of residual gas at the chamber on the combustion characteristics were investigated. As a result, the correlation between the passage hole number and overall passage hole area was grasped. The effects of the initial temperature were significant, but on the other hand, those of the initial pressure were weak. A more detailed analysis on the residual gas is required in the future.

A Study on Quantitative Measurements of Equivalence Ratio in Constant Volume Chamber Using UV Laser Raman Scattering (UV Laser Raman Scattering을 이용한 정적 연소기내 분사된 연료의 정량적 당량비 측정에 관한 연구)

  • Jin, S.H.;Heo, H.S.;Kim, G.S.;Park, K.S.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.35-42
    • /
    • 1998
  • Laser Raman scattering method has been applied to measure equivalence ratio of methane/air and propane/air mixture in constant volume combustion chamber. We used high power KrF excimer laser$(\lambda=248nm)$ and a high gain ICCD camera to capture low intensity Raman signal. Raman shifts and Ram cross-sections of $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4\;and\;C_3H_8$ were measured precisely. Our results showed an excellent agreement with other groups. Mole fraction measurement of $O_2\;and\;N_2$ from air showed that $O_2\;:\;N_2$ = 0.206 : 0.794. We used constant volume combustion chamber and gas injector which is operated at $5\sim10barg$. Methane and propane are used as a fuel. 50 Raman signal are obtained and ensemble averaged for measurement of equivalence ratio. Our measured results showed that the equivalence ratio of fuel/air mixture is reasonable at ${\pm}5%$ error range.

  • PDF

Combustion Characteristics of Methane-Hydrogen-Air Premixture( I ) (메탄-수소-공기 예혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.129-139
    • /
    • 1995
  • This study investigates the combustion characteristics of methane-hydrogen-air premixture in a constant volume combustion chamber. Primary factors of the combustion characteristics of methane- hydrogen-air premixture are the equivalence ratio and hydrogen supplement rate. In the case of $\phi$= 1.1, maximum combustion pressure and heat release rate have peaks, and they increase as the initial pressure and hydrogen supplement rate increase. The total burning time is also the shortest at the $\phi$= 1.1, it shorten by lowering the initial pressure and by increasing the hydrogen supplement rate. The maximum flame temperature is shown at the $\phi$= 1.0, and increasing the initial pressure and hydrogen supplement rate, it increases. The concentration of NO reveals the highest value at the $\phi$= 0.9, and it increases by increasing the initial pressure and hydrogen supplement rate. It is also found that the limit of lean inflammability of methane-hydrogen-air premixture is greatly widened by increasing the hydrogen supplement rate.

  • PDF

Combustion Characteristics of Emulsified C-heavy Oil in Constant Volume Combustion with High Temperature and Pressure (고온.고압의 정적연소에서 C-중유 에멀젼 연료의 연소특성)

  • Yoo, Dong-Hoon;Nishida, Osami;Fujita, Hirotsugu;Lim, Jae-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.243-249
    • /
    • 2010
  • The improvement of fuel economy and the reduction of diesel exhaust PM(Particulate Matter) and $NO_X$ have been successfully achieved by supplying diesel engines with emulsified diesel oil. However, combustion analysis of emulsified C-heavy oil is difficult because the combustion characteristics of emulsified C-heavy oil compared to other fuels have a special form. Therefore, these experimental researches have analyzed the combustion characteristics of emulsified C-heavy oil in a chamber with high pressure and temperature. The pressure and the rate of heat releases in a combustion chamber was decreased with increasing the water content and the ignition delay time was increased with increasing the water percent.

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (2) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (2))

  • 박종상;강병무;이명준;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.19-26
    • /
    • 2004
  • A prior fundamental study was executed using a constant volume chamber to improve the burning properties of lean pre-mixture by the injection of active radicals generated in the sub-chamber. In consequence, RI method shows remarkable progress in the aspects of burning velocity and combustible lean limit compared with SI method. In this study, the necessary additional works have been performed to be based on the former results. We changed parameters as the initial temperature and the initial pressure of mixture. And the effects of residual gas at issue in a real engine were investigated. As a result, the effects of initial temperature were significant, but on the other hand, those of initial pressure were slight. The correlation of passage hole number between overall passage hole area was grasped. And the more detailed analysis is required on residual gas.