• Title/Summary/Keyword: Constant-Volume Combustion Chamber

Search Result 161, Processing Time 0.02 seconds

A Study on Spray and Combustion Characteristics of Biodiesel Blended Diesel Fuel in a Constant Volume Combustion Chamber (바이오디젤이 혼합된 디젤 연료의 분무 및 연소 특성에 관한 연구)

  • Suh, Hyun-Uk;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.132-136
    • /
    • 2015
  • The objective of this study is to investigate the effect of biodiesel blending on spray and combustion characteristics. In order to this, blended fuels containing 0, 5, 20, 50, 100% biodiesel in weight fraction was injected via common rail to constant volume combustion chamber. As a result, spray cone angle decreased and the Sauter mean diameter increased because of the higher dynamic viscosity and density of biodiesel, however, it does not seemed that spray penetration was affected by these factors considerably. In the combustion experiment, ignition delay of biodiesel was shorter than that of diesel due to higher cetane number. And the peak value of heat release rate increased and the end of combustion was advanced owing to higher combustion efficiency cause by the characteristic of oxygenated fuel.

Combustion Characteristics of Land Fill Gas according to the Diameter of the Flame outlet of the Pre-chamber Spark Plug (예연소실 점화 플러그의 화염 분출구 직경에 따른 매립지가스의 연소 특성)

  • Kim, Kwonse;Jeon, Yeong-Cheol;Choi, Doo-Seuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.7
    • /
    • pp.111-117
    • /
    • 2021
  • This research work is to suggest the experimental results capable of solving an initial unsuitability of combustion and environment in a constant volume combustion chamber by using LFG(Land Fill Gas) which consists of 40% CO2 and 60% CH4. The experimental condition is set as 0.9~1.6 of air-fuel ratio, 3bar of combustion pressure, 25℃ of room temperature, methane for using gas, and 2.5~4.5 of Pre-chamber hole sizes. As a result, it can be seen that diffusion of initial flame is significantly increased by M3.0 model comparing with other one. The reason for the characteristics is that orifice effect is extremely improved by 0.9, 1.0, and 1.2 of air-fuel ratio comparing with other one. Consequently, this experiment is shown that M3.0 model is partially capable of improving combustion performance than a conventional ignition plug in case of applying to LFG with Pre-chamber design.

Numerical Study of Spray Characteristics of n-Heptane in Constant Volume Combustion Chamber under Diesel Engine Conditions (정적연소기를 이용한 디젤 엔진 조건에서 n-Heptane의 분무특성에 관한 수치해석 연구)

  • DAS, SHUBHRA KANTI;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.727-736
    • /
    • 2016
  • Numerical simulations of n-heptane spray characteristics in a constant volume combustion chamber under diesel engine like conditions with increasing ambient gas density ($14.8-142kg/m^3$) and ambient temperature (800-1000 K) respectively were performed to understand the non-vaporizing and vaporizing spray behavior. The effect of fuel temperature (ranging 273-313 K) on spray characteristics was also simulated. In this simulation, spray modeling was implemented into ANSYS FORTE where the initial spray conditions at the nozzle exit and droplet breakups were determined through nozzle flow model and Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) model. Simulation results were compared with experimentally obtained spray tip penetration result to examine the accuracy. In case of non-vaporizing condition, simulation results show that with an increment of the magnitude of ambient gas density and pressure, the vapor penetration length, liquid penetration length and droplet mass decreases. On the other hand vapor penetration, liquid penetration and droplet mass increases with the increase of ambient temperature at the vaporizing condition. In case of lower injection pressure, vapor tip penetration and droplet mass are increased with a reduction in fuel temperature under the low ambient temperature and pressure.

Development of a Small Sized Generator by Low Caloric Synthetic Gas from Coal Gasification (저발열량 석탄가스화 연료에 의한 소형발전시스템 개발)

  • 장준영;김태권;유영돈;윤용승;정석우
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.05a
    • /
    • pp.293-298
    • /
    • 2004
  • This paper presents the applicability of low caloric synthetic gas from coal gasification to small sized generator. Measurements on the combustion characteristics of synthetic gas from coal gasification as compared with LPG in constant volume combustion chamber have been conducted. A commercial LPG engine and generator are modified to use the low caloric synthetic gas from coal gasification as the engine fuel. We have demonstrated that the generator is well operated with various loads.

  • PDF

Understanding of Laminar Burning Velocity within a Length Scale Domain (길이 스케일이 관여된 층류 화염의 연소 속도 이해)

  • Jung, Yongjin;Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.77-78
    • /
    • 2015
  • Laminar burning velocities have been predicted by constant volume combustion chamber, counter flow burner and others. In this study, the measured flame propagation velocities in an assembled annular stepwise diverging tube were plotted with respect to equivalence ratio, length scale, and velocity scale. Three dimensional approach to understand the flame propagation velocity including laminar burning velocity is investigated, and the surface provides the correlation among quenching distance, propagation velocity, and equivalence ratio.

  • PDF

Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge (CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기)

  • 최승환;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

Effects of Ambient Conditions on the Atomization of Direct Injection Injector (분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향)

  • Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

Behavior of 2-Stage Injection on Diesel Spray (2단분사 디젤분무의 거동)

  • Park, B.D.;Kwon, S.I.;Oh, J.G.;Kim, S.J.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.33-39
    • /
    • 2000
  • The behavior of the 2-stage spray was studied by using the schlieren method with the high pressure common-rail injection system. The spray injected 2 times with the interval of $0.3ms{\sim}1.5ms$ between the 1st and the 2nd spray in a modeled combustion chamber of constant volume bomb. In this case, the quantity of injected fuel of 1st and 2nd also changed. The schlieren photograph shows that the 2nd spray goes further away than the 1st spray when the quantity of the 1st spray is less than that of the 2nd spray. The dispersion of the vapour to the combustion chamber is not affect in a 10% of 1st spray quantity. When the 1st spray quantity is more than the 2nd spray, the vapour scattering of spray is good.

  • PDF

Dispersion Characteristics of Sprays under the Condition of Solid Body Rotating Swirl (강체 선회유동 조건에서의 분무 분산 특성에 관한 연구)

  • 이충훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Spray dispersion in high pressure diesel engines have been simulated experimentally with a special emphasis on the effect of swirl by using a liquid injection technique. A constant volume chamber was designed to be rotatable in order to generate a continuous swirl and to have the flow field closely resembling a solid body rotation. Emulsified fuel was injected into the chamber and the developing process of fuel sprays was visualized. The effect of swirl on the spray dispersion was quantified by calculating non-dimensionalized dispersion area according to the spray tip penetration length. The results show that the effect of swirl on the spray dispersion is different between short and long spray penetrations. For short range of spray tip penetration, the effect of swirl on spray dispersion is quite small. However, as the spray tip is penetrated into longer distance in spray chamber, the effect of swirl on spray dispersion becomes larger. These results can be used as a basic data for designing combustion chamber and injection system of direct injection diesel engine.

  • PDF

Experimental Study on Effects of Syngas Addition in Flame Propagation and Stability of DME-Air Premixed Flames (디메틸에테르-공기 예혼합화염의 화염전파와 화염안정성에 있어서 합성가스의 첨가효과에 관한 실험적 연구)

  • Song, Wonsik;Park, Jeong;Kwon, Ohboong;Yun, Jinhan;Kee, Sangin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.44-50
    • /
    • 2012
  • The present study was conducted to investigate the flame instability(evaluated by Markstein length and cellular instability) and laminar burning velocity in a constant volume combustion chamber at room temperature and elevated pressure up to 0.3 MPa to suggest the possibility of utilizing mixtures of syngas added DME-air premixed flames in internal combustion engines. The experimentally measured laminar burning velocities were compared to predictions calculated the PREMIX code with Zhao reaction mechanism. Discussions were made on effects of syngas addition into DME-Air premixed flames through evaluating laminar burning velocity, Markstein length, and cellular instability. Particular concerns are focused on cellular instability caused by hydrodynamic instability and diffusive-thermal instability.