• Title/Summary/Keyword: Constant-Current Control

Search Result 696, Processing Time 0.028 seconds

Optimization of Fuzzy Controller for Constant Current of Inverter DC Resistance Spot Welding Using Genetic Algorithm (유전알고리즘을 이용한 인버터 DC 저항점용접에서의 정전류퍼지제어기 최적화)

  • Yu, Ji-Young;Yun, Sang-Man;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.99-105
    • /
    • 2010
  • Inverter DC resistance spot welding process has been very widely used for joining such as automotive body sheet metal. Because the lobe area of DC welding is larger than AC welding and DC welding has low electrode wear. So the use of Inverter DC resistance spot welding process has been further increased. And the application of high tensile steel is growing for light weight vehicle. To improve the weldability of high strength steel, the development of Inverter DC resistance spot welding system is more conducted. However, Inverter DC resistance spot welding system has a few problems. Current waveform is unstable and the expulsion has been occurred by characteristics of steel. In this study, inverter DC resistance spot welding system was made. And Fuzzy control algorithm was applied for constant current. The genetic algorithm was applied to optimize the fuzzy scaling factors, in order to optimize the fuzzy control.

A Study on vector control of induction motor drive using a speed sensorless (속도센서리스 벡터제어에 의한 유도전동기 운전)

  • 이춘상
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.417-420
    • /
    • 2000
  • In order to the torque control the indirect flux control was performed by controlling the ratio of e/f and the q-axis flux was estimated by the slip command and q-axis flux was estimated by the slip command and q-axis current in the rotor circuits. Also the frequency was controlled to keep on the q-axis flux to be zero and the constant torque characteristics could be obtained by generation the preset torque. In the induction motor driven by the boltage source inverter with the constant voltage and frequency the speed variation is expressed as a slip So the speed control can be achieved by slip compensation The slip was calculated with a q-flux current filtered by first-order filter and as the result the error problem which may occur in current detection was eliminated

  • PDF

A Variable Speed Control Scheme of a BLDC Motor for the High-Speed Blender Machine (고속 블렌더 머신용 BLDC 모터의 가변속 제어 방법)

  • Bae, Jongnam;Ahn, Jin-Woo;Lee, Dong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.57-59
    • /
    • 2018
  • This paper presents a novel reference variable speed control scheme of a BLDC motor for the high-speed blender machine according to the current limit. Because of a pulsating load variation of a high-speed blender machine, the actual speed is pulsated by the current limit in the high-speed region. The proposed control scheme uses a variable reference speed to reduce the speed variation from the current limit in the constant power region. The pulsated load is occurred at the material crushing, then the pulsated load is reduced after grinding. The reference speed is smoothly reduced at the pulsated load variation, then the enough torque can make a constant speed during crushing. When the pulsating load is reduced, the reference speed is automatically increased to the original speed value. The proposed control scheme is verified by experimental result by practical blender machine.

  • PDF

Large-Scale Current Source Development in Nuclear Power Plant (원전에 사용되는 직류전압제어 대전류원의 개발)

  • Jong-ho Kim;Gyu-shik Che
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.348-355
    • /
    • 2024
  • A current source capable of stably supplying current as a measurement medium is required in order to measure and test important facilities that require large-scale measurement current, such as a control element drive mechanism control system(CEDMCS), in case of dismantling a nuclear power plant. However, it can provides only voltage power as a source, not current, although direct voltage controlled constant current source is essential to test major equipment. That kind of source is not available to supply stable constant current regardless of load variation. It is just voltage supplier. Developing current source is not easy other than voltage source. Very large-scale current source up to ampere class more than such ten times of normal current is inevitable to test above mentioned equipment. So, we developed large-scale current source which is controlled by input DC voltage and supplies constant stable current to object equipment according to this requirement. We measured and tested nuclear power plant equipment using given real site data for a long time and afforded long period load test, and then proved its validity and verification. The developed invetion will be used future installed important equipment measuring and testing.

Speed Control Characteristics of BLDCM by CR-PWM VSI of Constant Switching Frequency (일정 스위칭 주파수의 CR-PWM VSI에 의한 BLDCM의 속도제어 특성)

  • Kim, Jang-Mok;Kim, Kwang-Heon;Won, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.53-57
    • /
    • 1990
  • This paper propose Constant Frequency CR-PWM VSI. In which ON/OFF output of Hystersis comparator, which compares the amplitude of reference current with that of actual current, control the switching elements with a constant sampling period of $\mu$-processor. Speed control system of BLDCM driven by controller wi th CF CR - PWM VSI was built.

  • PDF

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.

A PC Based for PMSM Sensorless Control Using Superposition Theorem (중첩의 원리를 적용한 PC 베이스 영구자석 동기 전동기 센서리스제어)

  • Lee, Sang-Hun;Hong, In-Pyo;Park, Seong-Jun;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.6
    • /
    • pp.292-297
    • /
    • 2002
  • This paper proposes a sensorless drive of a permanent magnet synchronous motor. In general EMF is used to calculate the current of Permanet Magnet Synchronous Motor(PMSM). However the current has a lag component by a time constant. So it is difficult to directly calculate a position angle. To estimate the position using the current without a lag component in this paper, the controller calculates the motor current by using a superposition principle in the equivalent circuit and then compensates lag component with a time constant of the motor. Therefore the estimated motor current without a lag compoent can be obtained and it is used to calculate the rotor position indirectly. In order to confirm the effectiveness of the proposed algorithm, experimental results are shown in detail.

Output Voltage Control Method of Switched Reluctance Generator using the Turn-off Angle Control

  • Kim Young-Jo;Choi Jung-Soo;Kim Young-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.414-417
    • /
    • 2001
  • SRG (Switched Reluctance Generator) have many advantages such as high efficiency, low cost, high-speed capability and robustness compared with characteristics of other machines. However, the control methods that have been adopted for SRGs are complicated. This paper proposes a simple control method using PID controller that only controls turn-off angles while keeping turn-on angles of SRG constant. The linear characteristics between the generated current and the turn-off angle can be used to control the turn-off angle for load variations. Since the reference current for generation can be produced from an error between the reference and the real voltage, it can be controlled to keep the output voltage constant. The proposed control method enhances the robustness of this system and simplifies the hardware and software by using only the voltage and speed sensors. The proposed method is verified by experimental results.

  • PDF

LCL Resonant Compensation of Movable ICPT Systems with a Multi-load

  • Hua, Jie;Wang, Hui-Zhen;Zhao, Yao;Zou, Ai-Long
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1654-1663
    • /
    • 2015
  • Compared to LC resonance, LCL resonance has distinct advantages such as a large resonant capability, low voltage and current stresses of the power device, constant voltage or current output characteristics, and fault-tolerance capability. Thus, LCL resonant compensation is employed for a movable Inductive Contactless Power Transfer (ICPT) system with a multi-load in this paper, which achieves constant current output characteristics. Peculiarly, the primary side adopts a much larger compensation inductor than the primary leakage inductor to lower the reactive power, reduce the input current ripple, generate a large current in the primary side, and realize soft-switching. Furthermore, this paper proposes an approximate resonant point for large inductor-ratio LCL resonant compensation through fundamental wave analysis. In addition, the PWM control strategy is used for this system to achieve constant current output characteristics. Finally, an experimental platform is built, whose secondary E-Type coils can ride and move on a primary rail. Simulations and experiments are conducted to verify the effectiveness and accuracy of both the theory and the design method.

Sensorless Vector Control System with Compensated Time Constant of Induction Motor Using a MRAS (MRAS를 이용한 유도 전동기의 시정수 보상을 갖는 속도 센서리스 벡터제어)

  • 임태윤;김동희;황돈하;김민회
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.540-543
    • /
    • 1999
  • This paper describes a speed sensorless algorithm for vector control system with compensated stator resistance and rotor time constant of induction motor using a model reference adaptive system(MRAS). The system are composed of two MRAC, one is a rotor speed estimation and a stator resistor identification by back-EMF observer, other is used to identify rotor time constant by magnetizing current observer, so that the estimation can be cover a very low speed range with a robust control. The suggest control strategy and estimation method have been validated by simulation study. In the simulation using Matlab/Simulik, the proposed speed sensorless vector control system are shown to operate very well in spite of variable rotor time constant and load fluctuation.

  • PDF