• Title/Summary/Keyword: Constant-Current Control

Search Result 694, Processing Time 0.027 seconds

A Design of Controller on the AC Servo Motor for Constant Torque Implementation (AC 서보 모우터의 일정 토크 실현을 위한 제어기 설계)

  • Yang, Nam-Yeol;Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1047-1050
    • /
    • 1993
  • Recently, AC servo motor has expanded its application areas the to the development of the power semi-conductor and control technology. But it has large torque ripple for its nonlinear characteristics and phase commutaion. In this paper, we proposed the switching angle overlapping method, and current control using tracking method in order to generate the constant torque of AC servo motor that has the trapezoidal back e.m.f. It is compared the these types of control method with the characteristics through simulation. We show that these methods lead the torque ripple to reduce and makes the position and speed characterlistics improved effectively. Also we prove that current control using tracking method is the best way to reduce torque ripple among the these types of control method.

  • PDF

A Study on Hand Speed Constant to Calculate Safe Distance of Press Protective Device (프레스 방호장치 안전거리 산정을 위한 손속도상수)

  • Lee, Keun-Oh;Kim, Jong-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.40-46
    • /
    • 2010
  • To protect press operator from the after-reach hazard, current Ministry of Labor Notification(MOLN) requires the use of a formula for calculating the safe distance away from the point of operation for locating press protective devices, Two Hand Control Devices(THCD) and Active Opto-Electronic Protective Devices(AOPD), on a power press. This formula is based on a same hand speed constant of 160cm/s. While EN standards use different hand speed constant for THCD and AOPD respectively. The objective of this study is to compare two guidelines on the hand speed constant published by MOLN and EN 692, also to propose a proper hand speed constant and validate it experimentally. As a experimental result, it could be known that hand speed constant of Ministry of Labor Notification should be improved as that of EN standards.

Sensorless Vector Control of Induction Motor with Rotor Time Constant Compensation (회전자 시정수를 보상한 유도전동기 센서리스 벡터제어)

  • Park, Chul-Woo;Lee, Moo-Young;Youn, Kyung-Sub;Ku, Bon-Ho;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.493-496
    • /
    • 1998
  • Several sensorless vector control methods of induction motor have been proposed, but these methods don't have the satisfying performance to the change of the rotor time constant. Therefore, this paper proposes the sensorless vector control method which estimates the rotor speed using MRAS and compensates the rotor time constant using current error feedback at the same time. This method can guarantees the accurate performance of sensorless vector control while the rotor speed and the rotor time constant are changing. This method is verified by computer simulation using SIMULINK in MATLAB.

  • PDF

Time Constant Estimation of Induction Motor rotor using MRAS Fuzzy Control (MRAS 퍼지제어를 이용한 유도전동기 회전자의 시정수 추정)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa;Cha Young-Doo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 2005
  • This paper presents time a constant estimation of induction motor using MRAS(model reference adaptive system) fuzzy control. The rotor time constant is enabled from the estimation of rotor flux, which has two methods. One is to estimate it based on the stator current and the other is to integrate motor terminal voltage. If the parameters are correct, these two methods must yield the same results. But, for the case where the rotor time constant is over or under estimated, the two rotor nut estimation have different angles. Furthermore their angular positions are related to the polarity of rotor time constant estimation error. Based on these observation, this paper develops a rotor time constant update algorithm using fuzzy control. This paper shows the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

A Bidirectional Single-Stage DC/AC Converter for Grid Connected Energy Storage Systems

  • Chen, Jianliang;Liao, Xiaozhong;Sha, Deshang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1026-1034
    • /
    • 2015
  • In this paper, a unified control strategy using the current space vector modulation (CSVM) technique is proposed and applied to a bidirectional three-phase DC/AC converter. The operation of the converter changes with the direction of the power flow. In the charging mode, it works as a buck type rectifier; and during the discharging mode, it operates as a boost type inverter, which makes it suitable as an interface between high voltage AC grids and low voltage energy storage devices. This topology has the following advantages: high conversion efficiency, high power factor at the grid side, tight control of the charging current and fast transition between the charging and discharging modes. The operating principle of the mode analysis, the gate signal generation, the general control strategy and the transition from a constant current (CC) to a constant voltage (CV) in the charging mode are discussed. The proposed control strategy has been validated by simulations and experimental results obtained with a 1kW laboratory prototype using supercapacitors as an energy storage device.

Control Design of the Brushless Doubly-Fed Machines for Stand-Alone VSCF Ship Shaft Generator Systems

  • Liu, Yi;Ai, Wu;Chen, Bing;Chen, Ke
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.259-267
    • /
    • 2016
  • This paper presents a stand-alone variable speed constant frequency (VSCF) ship shaft generator system based on a brushless doubly-fed machine (BDFM). In this system, the output voltage amplitude and frequency of the BDFM are kept constant under a variable rotor speed and load by utilizing a well-designed current vector controller to regulate the control winding (CW) current. The control scheme is proposed, and the hardware design for the control system is developed. The proposed generator system is tested on a 325 TEU container vessel, and the test results show the good dynamic performance of the CW current vector controller and the whole control system. A harmonic analysis of the output voltage and a fuel consumption analysis of the generator system are also implemented. Finally, the total efficiency of the generator system is presented under different rotor speeds and load conditions.

The development of laser system for cancer (암치료용 레이저 시스템 개발)

  • 이동진;김주명;김선학;임현수
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.08a
    • /
    • pp.154-155
    • /
    • 2001
  • A laser system for therapy of cancer is proposed in this paper. In order to accuracy and statistical output control we used the constant current control method and designed the power source to protect the resonator from the over -current, rush-current and electrical fault. The most important things are the radiation type for cancer therapy in laser system, we developed the radiation type of cw, pulse, and burst pulse. The experimental result show that laser beam power increase linearly from 100mW to 300mW for input current increasing and the exposure time.

  • PDF

Development of Digital Type Battery Charger based on Multi-Mode Control (디지털방식 다중제어 충전기 개발)

  • Byun Y.B.;Koo T.G.;Kim E.S.;Joe K.Y;Kim D.H.;Byun D.H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.308-311
    • /
    • 2001
  • Most of the battery charger for electric powered forklift truck are controlled by the method of 3-phased constant current and constant voltage. However, these chargers have several disadvantages like a large charger capacity, and a short battery life time. This paper presents a digital type battery charger based on multi-mode control adding a constant power control and several assistant controls in the conventional control. The whole control system is performed by a low cost one-chip micro-controller and completely digitize. So we can get a high precision control and a good reliability.

  • PDF

Operation of Brushless DC Motor using the Adaptive hysteresis bandwidth control algorithm (적응 Hysteresis band폭 제어 알고리즘을 이용한 Brushless DC Motor의 운전)

  • Cho, Kye-Seok;Kim, Kwang-Yeon;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.171-174
    • /
    • 1991
  • Among the various PWM methods, the hysteresis-band current control PWM method is popularly used because of its simplicity of implementation, fast response characteristics and inherent peak current limiting capability. However, the current control PWM method with a fixed hysteresis-band has the disadvantage that switching frequency decreases and current ripple is high as the increasing of back-EMF. As a result, load current contains excess harmonics. This paper describes a adaptive hysteresis-bandwidth control algorithm so as to maintain the average switching frequency constant and decrease the current ripple where the hysteresis bandwidth is derived as a relation with the switching frequency. This control algorithm is applied to the surface-type brushless DC motor with separated winding and using the computer simulation, the validity of its algorithm is proved.

  • PDF