• Title/Summary/Keyword: Constant-Current Control

Search Result 696, Processing Time 0.027 seconds

Off-line parameter Estimation of Induction Motors for Vector Control in Industrial Field (산업현장에서 벡터제어용 유도전동기의 오프라인 파라미터 추정)

  • 권병기;박가우;신원창;조응상;이진섭;최창호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.234-238
    • /
    • 1998
  • Parameter estimation of induction motor for vector control presented in this paper can be easily implemented and applied to inverters in the industrial field, because it needs no additional hardware such as voltage sensor and measuring equipment. At first, the stator resistance including switching loss of inverter is measured by simple voltage-current equation. Next, in pre-magnetization of machine by imposing the d-axis constant field-current, q-axis torque current is forced to the machine until its speed feedback reachs to pre-defined level of speed limit. At this time, we can measure the rotor time-constant by decreasing the distorted output-voltage of inverter. At last, stator inductance, transient inductance, and moment of inertia can be measured by the relationship of output voltage, output torque and speed feedback. The validity and usufulness of this method is verified by experimental results.

  • PDF

Performance improvement of stepping motor driver using the CPLD (CPLD를 이용한 2상 스테핑 모터 드라이버의 성능개선)

  • O, Tae-Seok;Kim, Il-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.910-915
    • /
    • 2003
  • This paper describes the design of a 2-phase stepping motor driver using CPLD(Complex Programmable Logic Device). The driver IC such as L297 (SGS-Thomson Microelectronics), which is mostly used has some problems in PWM control because of the switching noise of power MOSFETs. It causes current ripple and acoustic noise. To improve theses characteristics, we proposed a new current control method that the output PWM frequency is almost constant using a digital filter. Also we proposed constant current method for 1-2 phase(half step) excitation. The proposed method is implemented with CPLD(Xilinx, XC9572-PC44). Experimental results show the effectiveness of the proposed method.

  • PDF

Development of Digital Gas Metal Arc Welding System and Welding Current Control Using Self-tuning Fuzzy PID

  • Doan, Phuc Thinh;Pratama, Pandu Sandi;Kim, Suk-Yoel;Kim, Hak-Kyeong;Yeun, Hwang-Yeong;Byun, Gi-Sig;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1-8
    • /
    • 2011
  • This paper describes a new method for a digital gas metal arc welding (GMAW) system. The GMAW system is an arc welding process that incorporates the GMAW power source (PS-GMAW) with a wire feed unit (WFU). The PS-GMAW requires an electric power of constant voltage. A constant magnitude is maintained for the arc current by controlling the wire-feed speed of the WFU. A mathematical model is derived, and a self-tuning fuzzy proportional-integral-derivative (PID) controller is designed and applied to control the welding current. The electrode wire feeding mechanism with this controller is driven by a DC motor, which can compensate for both the molten part of the electrode and undesirable fluctuations in the arc length during the welding process. By accurately maintaining the output welding current and welding voltage at constant values during the welding process, excellent welding results can be obtained. Simulation and experimental results are shown to prove the effectiveness of the proposed controller.

Dimming Control of the LED Luminaire Emergency Exit Sign Operation using a Hybrid Super Capacitor of DC-DC Convertor (하이브리드 슈퍼커패시터 DC-DC 컨버터를 이용한 LED 비상 유도등 동작 디밍 제어)

  • Hwang, Lark-Hoon;Kim, Jin-Sun;Na, Yong-Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.220-229
    • /
    • 2017
  • In this paper, To take advantage a variety of DC power as the boost DC-DC converter design specifications through the inductor L and capacitor C through PSPICE to calculate the best estimate of the value. Boost DC-DC converter with a switch device using IRF840 and reverse recovery time Schottky diodes with excellent with constant current controller using D10SC6M and resistance can be configured to considering the Power LED Module was driven by the production. Converter's switching frequency is 50 kHz, the first Duty Rate was made to increase gradually depending on the value of the detection were, 10 % in the output voltage. As a result, the simulated Boost Power LED driver characteristics is in comparison with the design specifications, 5% or less as the error was approximated. Finally, when input 15 V were offered, a stable output 24 V were obtained. and Dimming Control through the adjustment of brightness and current consumption were possible.

Design of Adaptive Current Control Circuits for LEDs (LED 정전류 적응 제어 회로 설계)

  • Lee, Kwang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.12
    • /
    • pp.8-14
    • /
    • 2015
  • An effective way to ensure that LEDs produce wanted light output is to use a current driving topology, because the brightness of LEDs is directly related to their current. However, this topology may lead to the lifetime shortening of a illumination system because over-currents may flow through non-damaged LEDs in case some LEDs are damaged. This paper presents an adaptive current control circuits for LEDs, which protect LEDs in a good state by limiting the driving currents according to the number of damaged ones. The proposed control circuits consist of a simple constant-current driver and a micro-controller which monitors the voltage of LED array without any auxiliary current sensors for fault diagnosis. And the driving current is automatically controlled into 6-levels according to the number of failures.

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

Sliding Mode Control with Fixed Switching Frequency for Four-wire Shunt Active Filter

  • Hamoudi, Farid;Chaghi, A. Aziz;Amimeur, Hocine;Merabet, El Kheir
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.647-657
    • /
    • 2011
  • The present paper proposes a sliding mode control with fixed switching frequency for three-phase three-leg voltage source inverter based four-wire shunt active power filter. The aim is to improve phase current waveform, neutral current mitigation, and reactive power compensation in electric power distribution system. The performed sliding mode for active filter current control is formulated using elementary differential geometry. The discrete control vector is deduced from the sliding surface accessibility using the Lyapunov stability. The problem of the switching frequency is addressed by considering hysteresis comparators for the switched signals generation. Through this method, a variable hysteresis band has been established as a function of the sliding mode equivalent control and a predefined switching frequency in order to keep this band constant. The proposed control has been verified with computer simulation which showed satisfactory results.

Effects of Sr/Ca Ratio of SCT thin film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 Sr/Ca 비율 영향)

  • Kim, Jin-Sa;Oh, Yong-Cheul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.5-9
    • /
    • 2006
  • The SCT thin films are deposited on Pt-coated electrode($Pt/TiN/SiO_2/Si$) using RF sputtering method with Sr/Ca ratio. The maximum grain of thin films is obtained by ratio of Ca at 15 mol%. The dielectric constant was increased with increasing the ratio of Ca, while it was decreased if the ratio of Ca exceeded over 15 mol%. The dielectric constant changes almost linearly in temperature ranges of $-80{\sim}+90$. All SCT thin films used in this study show the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency is observed above 200 kHz. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the measuring temperature increases.

  • PDF

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

A Study on the modeling and stability of Flyback converter using Average Current-mode Control (평균전류모드제어 기법을 이용한 플라이백 컨버터의 모델링 및 안정도에 관한 연구)

  • Baek, Soo-Hyun;Song, Sang-Ho;Yoon, Shin-Yong;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2682-2684
    • /
    • 1999
  • This paper presents design and stability analysis of the constant frequency Flyback type converter using average current-mode control. The average current-mode control has been recently reported, and superior characteristics over a peak current-mode control such as a good tracking performance of an average current, no slope compensation and noise immunity. By the improvement of PM(Phase Margin) obt from applying the compensator in the current loop, the stability of designed flyback convert more improved. The validity of designed convert confirmed by simulation and experimental result

  • PDF