• Title/Summary/Keyword: Constant-Current Control

Search Result 694, Processing Time 0.034 seconds

Mixed Mode Control of Constant Power and Constant Current for Resistance Spot Welder using Dynamic Resistance Characteristics (동저항 특성을 이용한 저항 스폿 용접기의 정전력과 정전류의 혼합모드 제어)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1571-1577
    • /
    • 2015
  • A new mixed mode control of constant power and constant current for resistance spot welding inverter is proposed to improve the weld quality. The conventional control scheme adopts constant current or constant power control mode, however, it is not easy to guarantee the high weld quality because of the nonlinear resistance characteristics of the welding point. The proposed method utilizes the nonlinear characteristics by measuring the dynamic resistance in real time. Therefore, it is possible for the welder to be controlled adaptively depending on the welding state. Experimental results show that the proposed control scheme improves the weld quality by 6.8 times compared with the conventional constant current mode control.

Compensation of the rotor time constant of induction motor using current error feedback (전류오차 궤환을 이용한 유도전동기 회전자 시정수 보상)

  • 김승민;이무영;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.195-198
    • /
    • 1997
  • This paper proposes the effective compensation method of the rotor time constant of induction motor. An indirect vector control method is highly dependent on the motor parameters. To solve the problem of performance degradation due to parameter variation in an indirect vector control of induction motor, we compensate the rotor time constant by current error feedback. The proposed method is a simple on-line rotor time constant compensation method using the information from terminal voltages and currents. As the current error, difference between current command and estimated current, approaches to zero, the value of rotor time constant in an indirect vector controller follows the real value of induction motor. This scheme is valid transient region as well as steady state region regardless of low or high speed. This method is verified by computer simulation. For this, we constructed the simulation model of induction motor, indirect vector controller and current regulated PWM (CRPWM) voltage source inverter (VSI) using SIMULINK in MATLAB.

  • PDF

A Constant-Current and Constant-Voltage Control Method for Primary-Side Regulated Fly-Buck Converter (1차 측 제어 플라이벅 컨버터의 정전류 및 정전압 제어)

  • Younghoon Cho;Paul Jang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.30-38
    • /
    • 2023
  • In this paper, a constant current(CC) and constant voltage(CV) control method using a primary-side regulated(PSR) fly-buck converter is proposed. Because the primary-side structure of the fly-buck converter is the same as that of the synchronous buck converter, it always operates in continuous conduction mode(CCM). Therefore, in the proposed method, the load information on the secondary side can always be easily estimated by measuring the primary inductor current at the midpoint of the switch-on period. An accurate CC/CV control can be achieved through simple calculations based on this estimated information. Consequently, the proposed method is advantageous for optimizing the control performance of the PSR converter. The validity of the proposed control was verified using a 5 W prototype of a PSR fly-buck converter. The experimental results confirmed that the current reference of 500 mA was followed within the error range of 1.2%, and that the voltage reference of 12 V was followed within the error range of 1.8% despite the indirect control of the load current and output voltage from the primary side.

Rotor Time Constant Compensation of Vector Controlled Induction Motor Using Stator Current and Flux Error (고정자 전류와 자속의 오차를 이용한 벡터제어 유도전동기의 회전자 시정수 보상)

  • 김우현;박철우;임성운;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.367-375
    • /
    • 2000
  • It is proposed that the rotor time constant and inductance are compensated at the same time in the indirect vector control method of an induction motor. The proposed scheme compensates the rotor time constant using the difference between the Q-axis real stator current and estimated current that is calculated from the terminal voltage and current, and compensates inductance by using the difference between the D-axis real stator flux and estimated stator flux in the synchronous rotating reference frame. Although the rotor time constant and inductance vary at once, the proposed method compensates the rotor time constant and inductance with accuracy. In addition to, two variables can be compensated not only at the steady state condition, but also at the transient state, where the torque varies in a rectangular pulse waveform. Therefore, the performance of vector control is greatly improved as verified by experiment.

  • PDF

A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs (파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구)

  • Kim, Eung-Seok;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

A Comparison of Constant Current and Constant Voltage Control in LED Driver (LED driver에서의 정전류 및 정전압 제어의 비교 연구)

  • Han, Soo-Bin;Park, Suck-In;Jung, Hak-Kun;Song, Eu-Gine;Jung, Bong-Man
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.83-84
    • /
    • 2010
  • This paper reviews the performance difference between constant voltage control and constant current control in LED driver. Simulations of both control methods are performed for performance comparison especially with temperature variation. The results show that constant current control method is inherently better than constant voltage control for LED drive.

  • PDF

A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels (용융아연도금 강판 저항 점 용접 시 정전류 및 적응제어 적용에 따른 연속타점 특성 평가 및 고찰)

  • Seo, Jeong-Chul;Choi, Il-Dong;Son, Hong-Rea;Ji, Changwook;Kim, Chiho;Suh, Sung-Bu;Seo, Jinseok;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • With using adaptive control of the resistance spot welding machine, the advantage on electrode life time for galvanized steels has been addressed. This study was aimed to evaluate the electrode life time of galvanized steels with applying the constant current control and the adaptive control resistance spot welding process for a comparison purpose. The growth in diameter of electrode face was similar for both the constant current and the adaptive control up to 2000 welds. The button diameter was decreased with weld numbers, however, sudden increase in button diameter with use of the adaptive control after 1500 welds was observed. The peak load was continuously decreased with increasing number of welds for both the constant current and the adaptive control. The current compensation during a weld was observed with using the adaptive control after 1800 welds since the ${\beta}$-peak on dynamic resistance curve was detected at later weld time. The current compensation with adaptive control during resistance spot welding enhanced the nugget diameter at the faying interface of steel sheets and improved the penetration to thinner steel sheet.

A Study on Welding Performance Improvement in $CO_2$ Inverter Arc Welding Machine by Constant Wire Feeding Rate Control ($CO_2$ 인버터 아크용접기의 송급속도 제어에 의한 용접성능향상에 관한 연구)

  • 김길남;고재석;채영민;원충연;김규식;목형수;최규하
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.563-568
    • /
    • 1999
  • Generally the control method of wire feeding motor in welding machine has been used full-wave phase control method. The fire-angle control generates low frequency speed ripple, and it causes the output current ripple. So it results in the variation of welding condition and low welding performances such as spatter generation and bead state. For the purpose of welding performances improvement by speed controller in wire feeding motor, in this paper the constant speed control method for welding machine is proposed. The proposed system is composed of speed control loop and current control loop. As a result of experiment by using proposed constant wire feed experiment by using proposed constant wire feed speed controller, the output voltage and current waveform and metal transfer are maintained stably. And moreover the number of instantaneous short circuit occurrence is reduced remarkably.

  • PDF

A Constant Current Regulated Inverter System for Lighting and Beaconing of Aerodromes (항공관제용 정전류조정(CCR) 인버터 시스템의 개발)

  • Shon, Jin-Geun;Park, Jong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.141-146
    • /
    • 2006
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for Lighting and Beaconing of Aerodromes. The effectiveness of the proposed system confirmed through experimental results of CCR.

  • PDF

A Power Supply System for Lighting of Aerodromes by Using Power Factor Correction and Constant Current Regulator (PFC 및 CCR에 의한 항공조명용 전원공급장치의 개발)

  • Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2150-2156
    • /
    • 2007
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. But, problems that power factor deterioration and fast response of control, efficiency, harmonics and etc are still remain. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for lighting and beaconing of aerodromes. The effectiveness of the proposed system confirmed through experimental results of 10[kW] power supply system.