• Title/Summary/Keyword: Constant volume chamber

Search Result 213, Processing Time 0.025 seconds

A Study on Comparisons Between Combustion Temperatures Calculated by Two-Region Model and Measured by Two-Color Method in Premixed Constant-Volume Combustion (정적 예혼합기 연소에 있어서 2영역 모델 및 2색법에 의한 연소온도 비교에 관한 연구)

  • S.K.Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.300-310
    • /
    • 1999
  • A constant-volume combustion chamber is developed to measure the burnt gas temperature over the wide ranges of equivalence ratio from 1.5 to 2.7 and pressure from 0.1 to 2.7 and pressure from 0.1 to 6 MPa by two-color method. The combustion temperature is also calculated by the conventional two-region model. The premixed fuel rich propane-oxygen-inert gas mixtures under high pressures are simultaneously ignited by eight spark plugs located on the circumference of combustion chamber with 45 degree intervals. The eight converging flames compress the end gases to high pressures. The transmissiv-ity in the chamber center during the final stage of combustion at the highest pressure is measured by in situ laser extinction method. Comparisons are made with the combustion temperatures between two-color method and two-region model. It is found that the burnt gas temperature mea-sured by two-color method is higher than that calculated by two-region model because of being the negative temperature gradient on the calculation and the temperature distribution of light path-length on the measurement and the burnt gas temperature for the turbulent combustion is higher than that of the laminar combustion under the same conditions because the heat loss for turbulent combustion is lower due to the shorter combustion period.

  • PDF

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.

Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber( I ) (부실식 정적연소실내 층상혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.;Ryu, J.I.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.65-75
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The results indicated that even the vety lean mixture, which is normally not flammable in single chamber type, could be burned within. a comparatively short time by using sub-chamber with stratified charge method. And the lean inflammability limit of mixture in a main chamber was about ($\phi_m$cr=O.46, when the equivalence ratio of a sub-chamber was $\phi_s$= 1.0. Initial time of pressure increase and total burning times were decreased and maximum combustion pressure. was increased as the equivalence ratio of both sub and main chamber approached unity. Specifically, initial time of pressure increase and total burning times were greatly affected rather by. the equivalence ratio of sub-chamber than that of main chamber. The maximum combustion pressure was little affected if the total equivalence ratio lies in the same range.

  • PDF

SOOT YIELD OF TURBULENT PREMIXED PROPANE-OXYGEN-INERT GAS FLAMES IN A CONSTANT-VOLUME COMBUSTOR AT HIGH PRESSURES

  • Bae, M.W.;Bae, C.W.;Lee, S.K.;Ahn, S.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degrees intervals in order to observe the soot formation under high temperature and high pressure. The eight converged flames compress the end gases to a high pressure. The laser schlieren and direct flame photographs with observation area of 10 mm in diameter are taken to examine the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in-situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The changes of pressure and temperature during soot formation are controlled by varying the initial charging pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping the temperature and raising the pressure at a constant equivalence ratio, and the soot yield in turbulent combustion decreases as compared with that in laminar combustion because the burnt gas temperature increases with the drop of heat loss for laminar combustion.

Characteristics of Premixed Flame Propagations of R134a/Methane in a Constant Volume Combustion Chamber (정적 연소실 내 R134a 및 메탄 예혼합 화염의 전파 특성)

  • Choi, Byung Chul;Park, June Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.85-86
    • /
    • 2014
  • The characteristics of the outward-propagating premixed flames of stoichiometric mixtures of R134a/methane/oxygen/nitrogen have been experimentally investigated in a constant volume combustion chamber. Three regimes of the expanding flames were categorized based on the flame behavior.

  • PDF

A Study on the Effect of Turbulent Combustion upon Soot Formation in Premixed Constant-Volume Propane Flames (정적 예혼합 프로판 화염의 매연생성에 미치는 난류연소 영향에 관한 연구)

  • 배명환;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.889-898
    • /
    • 2003
  • The soot yield is studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effect of turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures and high temperatures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. It is found that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

A study on the combustion characteristics according to evaporation rate of gasoline (가솔린 연료의 기화율 변화에 따른 연소 특성에 관한 기초 연구)

  • Lee, K.H.;Lee, C.S.;Shin, K.S.;Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.29-36
    • /
    • 1996
  • The present study systematically investigates the effect of evaporation rate on the combustion characteristics and the flame stabilization in a gasoline engine. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaparating a gasoline fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion duration were deteriorated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for gasoline fuel was strongly influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

ANALYSIS OF DIRECT INJECTION SI STRATIFIED COMBUSTION IN HYDROGEN LEAN MIXTURE - COMBUSTION PROMOTION AND COOLING LOSS BY HYDROGEN -

  • Shudo, Toshio;Tsuga, Koichiro
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.85-91
    • /
    • 2001
  • Characteristics of methane direct-injection spark-ignition stratified combustion in lean hydrogen mixture were analyzed both in a single cylinder engine and in a constant volume combustion chamber. Combustion pressure and Instantaneous combustion chamber wall temperature during the combustion process were measured with a thin-film thermocouple and used in analyses of combustion and cooling loss. Results in this research show that the premixed hydrogen increases cooling loss to combustion chamber wall while achieving combustion promotion, and the combustion system is effective especially in lean mixture conditions. Analysis of flame propagation was also done with Schlieren photography in the constant volume combustion chamber.

  • PDF

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

An Experimental Study on the Combustion and Emission Characteristics of Hydrogen Enriched LPG Fuel in a Constant Volume Chamber (정적연소기내 H2-LPG 연료의 혼합 비율에 따른 연소 및 배출가스 특성에 관한 실험적 연구)

  • Lee, Seang-Wock;Kim, Ki-Jong;Ko, Dong-Kyun;Yoon, Yu-Bin;Cho, Yong-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.227-235
    • /
    • 2012
  • Finding an alternative fuel and reducing environmental pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched LPG fuel in constant volume chamber. An experimental study was carried out to obtain fundamental data for the combustion and emission characteristics of pre-mixed hydrogen and LPG in a constant volume chamber (CVC) with various fractions of hydrogen-LPG blends. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. Exhaust emissions were measured using a HORIBA exhaust gas analyzer for various fractions of hydrogen-LPG blends. The results showed that the rapid combustion duration was shortened, and the rate of heat release elevated as the hydrogen fraction in the fuel blend was increased. Moreover, the maximum rate of pressure rise also increased. These phenomena were attributed to the burning velocity which increased exponentially with the increased hydrogen fraction in the $H_2$-LPG fuel blend. Exhaust HC and $CO_2$ concentrations decreased, while NOX emission increased with an increase in the hydrogen fraction in the fuel blend. Our results could facilitate the application of hydrogen and LPG as a fuel in the current fossil hydrocarbon-based economy and the strict emission regulations in internal combustion engines.