• Title/Summary/Keyword: Constant temperature chamber

Search Result 215, Processing Time 0.021 seconds

Preferred and Suggested Winter Indoor Temperatures of College Students (남녀 대학생의 겨울철 실내 쾌적온도 및 적정온도)

  • Shim, Huen-Sup;Jeong, Woon-Seon
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.3
    • /
    • pp.485-491
    • /
    • 2011
  • This study was to present the preferred and the suggested indoor temperature of college students in winter based on their body composition. A total of 14 subjects(6 males and 8 females) participated in this study. They sat in a climatic chamber controlled at $24^{\circ}C$ wearing experimental garments(0.7clo). The air temperature decreased $1^{\circ}C$ every 15 minutes until it reached $19^{\circ}C$. After the stepwise temperature change, subjects were asked to select a comfortable air temperature by dialing the temperature control switch inside the chamber. The preferred temperature was determined when subjects did not change the air temperature for 10 minutes. The measurements were oxygen consumption, rectal temperature, skin temperature, and subjective sensation. Main results are as follows. In a mild cold condition, females demonstrated lower oxygen consumption and mean skin temperature than males while keeping a constant rectal temperature. Females increased rectal temperature and decreased mean skin temperature greater than males from $24^{\circ}C$ to $19^{\circ}C$. Males showed larger oxygen consumption increase than females. It appears that the thermo-physiological responses in a mild cold condition might be different between males and females. The preferred winter indoor temperature was $22.3^{\circ}C$ for males and $23.4^{\circ}C$ for females, and the suggested temperature was $21^{\circ}C$ for males and $23^{\circ}C$ for females.

Numerical Quadrature for the Prandtl Meyer Function at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2008
  • When the stagnation temperature of the combustion chamber or ambient air increases, the specific heats and their ratio do not remain constant any more, and start to vary with this temperature. The gas remains perfect, except, it will be calorically imperfect and thermally perfect. A new generalized form of the Prandtl Meyer function is developed, by adding the effect of variation of this temperature, lower than the threshold of dissociation. The new relation is presented in the form of integral of a complex analytical function, having an infinite derivative at the critical temperature. A robust numerical integration quadrature is presented in this context. The classical form of the Prandtl Meyer function of a perfect gas becomes a particular case of the developed form. The comparison is made with the perfect gas model for aim to present a limit of its application. The application is for air.

Analysis of Temperature and Total Heat of Heated Glass through Experimental Measurement and Three-Dimensional Steady-State Heat Transfer Analysis (실측실험과 3차원 정상상태 열전달 해석을 통한 발열유리의 온도 및 전열량 분석)

  • Lee, Do-Hyung;Yoon, Jong-Ho;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.111-116
    • /
    • 2015
  • Heat loss from windows and condensation occuring on its surface due to its lower insulation value causes much discomfort to occupants. In this study, Heated glass was used to make a basic study on prevention of condensation on glass surface for its heating functionality through experimental measurement and simulation analysis of total heat flux on the interior and exterior surface of glass. Error between experimental results and three dimensional steady-state heat transfer analysis were caused firstly, beacuse in the experimental chambers, cold chamber and steady temperature and humidity chamber, air temperature setting was not constant but rather ON/OFF control, and secondly, due to error rate in heat flux meter due to heat flux direction even in stable conditions.

Characteristics of Liquid Fuel Jet Injected into Supercritical Environment (초임계 환경으로 분사되는 액체 연료 제트의 분사 거동 특성)

  • An, Jeongwoo;Choi, Myeung Hwan;Lee, Jun;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.333-338
    • /
    • 2022
  • The single jet of decane/methylcyclohexane mixed fuel that is surrogate for kerosene was injected into supercritical environment and visualized using shadowgraph technique. The injection pressure drop of the fuel jet of Tr = 0.484 was kept constant at 0.5 MPa and the experiment was conducted above the critical point of the mixed fuel, and the reduced temperatures of the chamber was changed from 1.00 to 1.23, and the reduced pressures was 1.00 and 1.38. As an index for reducing the density of jets sprayed into the supercritical environment, the brightness intensity of the post-processed jet image was observed with the internal temperature and pressure of the chamber. It was confirmed that the decrease in the brightness intensity of the jet when the temperature inside the chamber increased, and when the pressure inside the chamber was higher at the same temperature, the decrease in the brightness intensity of the jet was delayed. When the pressure inside the chamber is high, it is thought that the change in brightness intensity is delayed due to the increase in the pseudo-critical temperature of the fuel and the increase in the temperature required to reduce the density of the fuel jet.

Using Ambient Control to Prevent External Disturbances in Large-scale Furnace (대형 용해로의 외부 환경변수를 통제하기 위한 주변 환경관리의 활용)

  • Cho, Jin-Hyung;Chang, Sung-Ho;Lee, Sae-Jae;Jang, Do-Soo;Suh, Jung-Yul;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Large glass furnaces to produce glass for CRT are housed in huge chambers. It is costly to maintain such a chamber in constant temperature, humidity, and(air) pressure. In this study, first, we show that the process of such a huge furnace, which requires the steady maintenance of high temperature, is badly affected by the ambient temperature of surrounding air. Second, an alternative process which not only maintains the relatively constant temperature dispersion around the furnace, but is also economical will be proposed. We calculate the necessary volume of air inflow in the appendix.

Combustion Characteristics of Methane-Hydrogen-Air Premixture( I ) (메탄-수소-공기 예혼합기의 연소특성( I ))

  • Kim, B.S.;Kwon, C.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.129-139
    • /
    • 1995
  • This study investigates the combustion characteristics of methane-hydrogen-air premixture in a constant volume combustion chamber. Primary factors of the combustion characteristics of methane- hydrogen-air premixture are the equivalence ratio and hydrogen supplement rate. In the case of $\phi$= 1.1, maximum combustion pressure and heat release rate have peaks, and they increase as the initial pressure and hydrogen supplement rate increase. The total burning time is also the shortest at the $\phi$= 1.1, it shorten by lowering the initial pressure and by increasing the hydrogen supplement rate. The maximum flame temperature is shown at the $\phi$= 1.0, and increasing the initial pressure and hydrogen supplement rate, it increases. The concentration of NO reveals the highest value at the $\phi$= 0.9, and it increases by increasing the initial pressure and hydrogen supplement rate. It is also found that the limit of lean inflammability of methane-hydrogen-air premixture is greatly widened by increasing the hydrogen supplement rate.

  • PDF

End-Gas Temperature Measurments in a DOHC Spark-Ignition Engine Using CARS (CARS를 이용한 DOHC 스파크 점화 기관의 말단 가스 온도 측정)

  • 최인용;전광민;박철웅;한재원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.122-128
    • /
    • 1999
  • CARS(Coherent anti-Stokes Raman Spectroscopy) temperature measurement under engine-like condition was validated by measuring unburned gas temperatures of premixed propane-air flame in a constant volume combustion chamber. The measured temperatures were compared with predictions of 2 zone flame propagation model. End-gas temperatures were measured were measured by CARS technique in a conventional 4 cylinder DOHC spark-ignition engine fueled with PRF 80. Cylinder pressure was measured simultaneously with CARS signal and used as a parameter on fitting CARS spectrum to library of theoretical spectra. There was a good agreement between the measured temperature and adiabatic core temperature calculated from measured cylinder pressure. Significant heating by pre-flame reaction in the gas was observed in the late part of compression stroke.

  • PDF

Evaluation of Usability in Extreme Temperature Environments of Safeguards Equipment (안전조치 검증장비의 극한 온도환경 적용성 평가)

  • Heekyun Baek;Jinwon Lee;Jung-Ki Shin
    • Journal of Radiation Industry
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • For most commercial radiation measurement equipment, manufacturers specify an operating temperature in the range of 0 to +40℃. However, in environments that exceed the quality assurance performance of the safeguards equipment, such as the winter environment in North Korea, the performance of the equipment deteriorates or normal use is impossible. In this study, safeguards equipment measurements were performed by creating an extreme temperature environment using a constant temperature and humidity test chamber. The safeguards equipment used in the evaluation was MIRION's Inspector-2000-based equipment, which evaluated the usability in extreme temperature environments using three types of detection units: NaI(Tl), CZT, and HPGe.

Effect of Ignition-Energy Characteristics on the Ignition and the Combustion of a Premixed Gas (점화에너지 특성이 예혼합기의 착화와 연소에 미치는 영향)

  • 이중순;이태원;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 1996
  • In this paper, we study effect of the factors, participating in the combustion as the initial conditions, such as the flow characteristics of the mixture and the initial temperature, pressure and equivalence ratio in the chamber on the ignitability of the mixture, the combustion duration and the maximum combustion-pressure. The experiment was performed in a constant-volume combustion chamber, with turbulent flow inside, equivalent to the actual engine at TDC. The present experiment utilizes three devices which differ from each other in the distribution and the magnitude of discharge energy.

  • PDF

A Study on Surface Growth Direction and Particle Shape According to the Amount of Oxygen and Deposition Parameters

  • Jeong, Jin;Kim, Seung Hee
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.209-211
    • /
    • 2018
  • A zinc oxide thin film doped with aluminum was deposited by RF sputtering. The deposition temperature of the sputter chamber was kept constant at $350^{\circ}C$, the power supplied to the chamber was 75 W, the oxygen flow rate was changed to 10 sccm and 20 sccm, and the thin film deposition time was changed to 120 and 180 minutes. The structures of the deposited zinc oxide thin films were analyzed by van der Waals method using an X-ray diffractometer. As a result of X-ray diffraction, the amount of oxygen supplied to the zinc oxide thin film increased, and the surface growth of the (002), (400), (110), and (103) planes showed a change with increasing deposition time. Moreover, as the amount of oxygen supplied to the zinc oxide thin film increased, their shape was observed to be coarse, and the thin film' s particles shape was correlated with the oxygen chemical defect introduced.