• Title/Summary/Keyword: Constant pressure system

Search Result 570, Processing Time 0.028 seconds

Simulation of Modeling Characteristics of Pumping Design Factor on Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, with the development of advanced thin film devices comes the need for constant high quality vacuum as the deposition pressure is more demanding. It is for this reason our research seeks to understand how the variable design factors are employed in such vacuum systems. In this study, the effects of design factor applications on the vacuum characteristics were simulated to obtain the optimum design modeling of variable models on an ultra high vacuum system. The commercial vacuum system simulator, $VacSim^{(multi)}$, was used in our investigation. The reliability of the employed simulator was verified by the simulation of the commercially available models of ultra high vacuum system. Simulated vacuum characteristics of the proposed modeling aligned with the observed experimental behavior of real systems. Simulated behaviors showed the optimum design models for the ideal conditions to achieve optimal pressure, pumping speed, and compression ratio in these systems.

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.

Measurements of Equivalence Ratio in the Spark Plug Gap and Its-Effects on Combustion Under Stratified Mixture Conditions in a Constant Volume Chamber (정적 연소실에서 성층화된 혼합기 조건하의 점화 전극사이 당량비 측정과 연소 특성에 미치는 영향)

  • Bae, Sang-Su;Lee, Gi-Cheol;Min, Gyeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1311-1317
    • /
    • 2001
  • To investigate only the effects of the stratified mixture distribution on initial flame propagation and combustion characteristics, the instantaneous equivalence ratio in the spark plug gap and combustion pressure were measured simultaneously In a constant volume chamber, To induce the stratified propane-air mixture distribution near the spark plug, counter-flow typed mixture injection system was used under the constant mean equivalence ratio $\Phi$$\_$mean/= 1.0 The instantaneous equivalence ratio was measured by a single-shot Raman scattering with narrow-band KrF excimer laser. The measuring error was within the limit of $\pm$ 3.5% provided that the proposed method was applied to the measured Raman signals. Judging from mass fraction burned derived from the measured pressure, the optimum combustion characteristics were shown under the condition that the local equivalence ratio in the spark plug was near 1.28$\pm$0.04, and these characteristics were more remarkable at the initial stage of combustion.

Measurement and Analysis of Rodent Biological Signals using Telemetry System (원격측정장치를 이용한 설치류의 생체신호 측정 및 분석)

  • Kim, Chang-Hwan;Hur, Gyeong-Haeng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1159-1165
    • /
    • 2011
  • Telemetry techniques of rats have been used for assessing safety pharmacology of drugs and chemicals. Biological signals including blood pressure and heart rate measured under anesthesia were significantly different from those obtained under normal conditions. The stress of restraint in awake animals can also affect the accuracy of physiological evaluation. This paper details the surgery required to allow key cardiovascular parameters to be determined. The telemetric measurement of cardiovascular parameters such as blood pressure, heart rate, electrocardiograph(ECG) established. We carried out the continuous monitoring of cardiovascular parameters using the telemetry system in F344 rats. During the measurement, no significant changes were observed in the heart rate and blood pressure. ECG signals and body temperature were also constant during the measurement of biological signals. With the results of this study, we conclude that this telemetry system can be applied usefully for the assesment of biological parameters in the rats.

On-line Fault Detection and Diagnosis for Heat Exchanger of Variable Speed Refrigeration System Based on Current Information (전류정보를 이용한 가변속냉동시스템의 열교환기 실시간 고장 진단)

  • Lee, Dong-Gyu;Jeong, Seok-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.88-94
    • /
    • 2007
  • This study deals with on-line fault detection and diagnosis for heat exchanger of variable speed refrigeration system. Conventional studies about fault of heat exchanger in refrigeration system have used temperature and pressure information. The temperature and pressure are able to be used valuably for faults detection of constant speed refrigeration system. However in case of variable speed refrigeration system, the temperature and pressure are no longer useful information for fault detection due to compensation effect of feedback controller. While current information is possible to detect faults of variable speed refrigeration system. The current information was detected in an inverter, it was used after transforming rms value. The faults of variable speed refrigeration system are divided into electrical faults and mechanical faults. We performed fault detection and diagnosis about heat exchanger among mechanical faults such as condenser fouling and evaporator fan fouling through some experiments.

  • PDF

Constant Estimated Terminal Pressure Control Using PID and Fuzzy Control in the Booster Pump System (Booster Pump System에서의 PID 및 Fuzzy 제어를 이용한 일정 예측 최종 압력 제어)

  • 이병훈;이재춘;전덕구;이상균;황민규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.119-122
    • /
    • 1996
  • 본 논문은 Building, 아파트, 병원 호텔 등의 건물의 급수 System으로서 최근 대두되고 있는 Bosster Pump System에 관한 것으로서, 제품의 주요 특징 및 제어 알고리즘을 소개하고 특히 최종 User에게 쾌적한 급수 환경을 제공하기 위한 주 제어 기능인 일정 예측 최종 압력 제어를 PID 및 Fuzzy 제어이론을 이용하여 구현하였는데, 그 적용 알고리즘을 소개하고, 실제 제어 실험을 통해 PID제어와 Fuzzy 제어를 비교하였다.

  • PDF

Effects on Performance Characteristics of Diesel Engine by EGR system with Scrubber (Scrubber를 장착한 EGR 시스템이 디젤기관의 성능특성에 미치는 영향)

  • 임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.184-191
    • /
    • 1999
  • Th effects of exhaust gas recirculation(EGR) on the characteristics of combustion exhaust emissions and specific fuel consumption(SFC) are experimentally investigated by four-cylin-der four-cycle and direct injection marine diesel engine. In order to reduce soot contents in the recirculated exhaust gas to intake system of the engines a novel diesel soot removal system with a cylinder-type scrubber which has water injector(4 nozzles in 1.0mm diameter)is specially designed and manufactured for the experi-mental system. The obtained results are as follows; The combustion pressure in cylinder is decreased and ignition is delayed with increasing EGR rate. The accumulated quantity of heat release is slightly decreased and the tendency of heat release rate is not constant. NOx and Soot emissions are decreased by maximum 7% and 540% with scrubber tan without scrubber in the range of experimental conditions. Those are increased at the lean burn area with increasing equivalence ration in the constant value of engine speed and EGR rate. Also those are decreased with increasing EGR rate in the constant value of engine speed and equivalence ratio.

  • PDF

High-Precision Direct-Operated Relief Valve with a Variable Elasticity Spring (변탄성 스프링을 이용한 고정밀 직동형 릴리프 밸브)

  • Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.87-96
    • /
    • 2020
  • In this study, a variable elasticity spring was applied to improve the pressure control precision of conventional relief valves. The equilibrium equation of the forces acting on the valve poppet was derived; it is demonstrated that matching the elastic rate of the pressure-adjusting coil spring to the equivalent elastic rate of the flow force improved the pressure override. The procedures that were used to design the variable elasticity spring are presented, and some applications of the variable elasticity spring are also introduced. Computer simulations were used to analyze three cases: a poppet-closed flow force structure, a poppet-open flow force structure with a constant elasticity spring, and a structure containing a variable elasticity spring. It is confirmed that the pressure control precision of the relief valve can be significantly improved upon by applying a variable elasticity spring to the poppet-open flow force structure.

Expert System for ABC Tuning of Once-Through Bboiler

  • Matsumura, S.;Kojima, Y.;Tozaki, T.;Shirasaka, Y.;Suzuki, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.744-748
    • /
    • 1989
  • A newly developed Expert System (ES) for the tuning of thermal power plant control equipment is described. The system is furnished with the rules for controller tuning which were obtained by analysis and arranging the data and knowledge from the experts or tuning records. Based on these rules, automatic tuning or setting of the control parameters is performed in real-time base. The performance of the test equipment, a combination of ES and a boiler simulator, was examined in the automatic tuning test for steam pressure, steam temperature, and load controllers of a constant-pressure once-through boiler model. It was confirmed from the test results that the system is quite promising for future application to actual plants, since the tuning results obtained by the proposed system were similar to those by tuning experts.

  • PDF

Experimental Study on the Performance of Refrigeration System with an Ejector

  • Lee, Won-Hee;Kim, Yoon-Jo;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2002
  • Experimental investigation on the performance of dual-evaporator refrigeration system with an ejector has been carried out. In this study, a hydrofluorocarbon (HFC) refrigerant R134a is chosen as a working fluid. The condenser and two-evaporators are made as concentric double pipes with counter-flow type heat exchangers. Experiments were peformed by changing the inlet and outlet temperatures of secondary fluids entering condenser, high-pressure evaporator and low-pressure evaporator at test conditions keeping a constant compressor speed. When the external conditions (inlet temperatures of secondary fluid entering condenser and one of the evaporators) are fixed, results show that coefficient of performance (COP) increases as the inlet temperature of the other evaporator rises. It is also shown that the COP decreases as the mass flow rate ratio of suction fluid to motive fluid increases. The COP of dual-evapo-rator refrigeration system with an ejector is superior to that of a single-evaporator vapor compression system by 3 to 6%.