• 제목/요약/키워드: Constant loading test(CLT)

검색결과 3건 처리시간 0.016초

수소-천연가스 혼합연료 차량 연료 공급시스템 수소영향 평가 (Hydrogen Effect Assessment of Fuel Supply Systems for Hydrogen Blended Natural Gas Vehicle)

  • 강승규;김상렬
    • 에너지공학
    • /
    • 제26권4호
    • /
    • pp.1-6
    • /
    • 2017
  • 본 연구는 수소-천연가스 혼합연료 차량에 사용되는 금속 및 비금속재료에 대한 수소영향을 평가하였다. 수소가 30% 혼합된 HCNG연료의 사용 조건(25MPa)에서 34CrMo강은 겨울철 조건에서는 수소 침투량이 0.0018ppm, 여름철 조건에서 5.3ppm으로 측정되었다. 일정하중시험(CLT)에 의한 임계 수소량이 1.03ppm으로 평가되어, 34CrMo 강은 HCNG 사용 조건에서 수소 취화에 의한 취성 파괴를 일으킬 수 있는 것으로 평가된다. 비금속재료에 대한 평가에서는 모든 재료가 시험 기준을 만족하였으나, Fluorocarbon 고무 재질의 경우 체적 변화가 크게 발생하여 사용에 각별한 주의가 요구된다.

다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동 (Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals)

  • 유재석;곽현;이명진;김용덕;강남현
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

600MPa급과 800MPa급 전용착금속의 미세조직에 따른 수소지연파괴 거동 (Microstructural Effects on Hydrogen Delayed Fracture of 600MPa and 800MPa grade Deposited Weld Metal)

  • 강희재;이태우;윤병현;박서정;장웅성;조경목;강남현
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.52-58
    • /
    • 2012
  • Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to-failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.