• Title/Summary/Keyword: Constant current and power control

Search Result 402, Processing Time 0.024 seconds

Mixed Mode Control of Constant Power and Constant Current for Resistance Spot Welder using Dynamic Resistance Characteristics (동저항 특성을 이용한 저항 스폿 용접기의 정전력과 정전류의 혼합모드 제어)

  • Kang, Sung-Kwan;Jung, Jae-Hun;Nho, Eui-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1571-1577
    • /
    • 2015
  • A new mixed mode control of constant power and constant current for resistance spot welding inverter is proposed to improve the weld quality. The conventional control scheme adopts constant current or constant power control mode, however, it is not easy to guarantee the high weld quality because of the nonlinear resistance characteristics of the welding point. The proposed method utilizes the nonlinear characteristics by measuring the dynamic resistance in real time. Therefore, it is possible for the welder to be controlled adaptively depending on the welding state. Experimental results show that the proposed control scheme improves the weld quality by 6.8 times compared with the conventional constant current mode control.

A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs (파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구)

  • Kim, Eung-Seok;Kim, Young-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.9
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

A Power Supply System for Lighting of Aerodromes by Using Power Factor Correction and Constant Current Regulator (PFC 및 CCR에 의한 항공조명용 전원공급장치의 개발)

  • Shon, Jin-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2150-2156
    • /
    • 2007
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. But, problems that power factor deterioration and fast response of control, efficiency, harmonics and etc are still remain. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for lighting and beaconing of aerodromes. The effectiveness of the proposed system confirmed through experimental results of 10[kW] power supply system.

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

A Constant-Current and Constant-Voltage Control Method for Primary-Side Regulated Fly-Buck Converter (1차 측 제어 플라이벅 컨버터의 정전류 및 정전압 제어)

  • Younghoon Cho;Paul Jang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.30-38
    • /
    • 2023
  • In this paper, a constant current(CC) and constant voltage(CV) control method using a primary-side regulated(PSR) fly-buck converter is proposed. Because the primary-side structure of the fly-buck converter is the same as that of the synchronous buck converter, it always operates in continuous conduction mode(CCM). Therefore, in the proposed method, the load information on the secondary side can always be easily estimated by measuring the primary inductor current at the midpoint of the switch-on period. An accurate CC/CV control can be achieved through simple calculations based on this estimated information. Consequently, the proposed method is advantageous for optimizing the control performance of the PSR converter. The validity of the proposed control was verified using a 5 W prototype of a PSR fly-buck converter. The experimental results confirmed that the current reference of 500 mA was followed within the error range of 1.2%, and that the voltage reference of 12 V was followed within the error range of 1.8% despite the indirect control of the load current and output voltage from the primary side.

A Constant Current Regulated Inverter System for Lighting and Beaconing of Aerodromes (항공관제용 정전류조정(CCR) 인버터 시스템의 개발)

  • Shon, Jin-Geun;Park, Jong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.141-146
    • /
    • 2006
  • According as level of industry develops day after day, electricity load system of industry requires high level control, effectiveness and high efficiency. Among supply and control unit of suitable power supply in these load characteristic, inverter systems of constant current regulate is used widely control of lighting and electric heating system. Therefore, in this paper proposed an inverter systems with constant current regulation and power factor correction (PFC) circuit for Lighting and Beaconing of Aerodromes. The effectiveness of the proposed system confirmed through experimental results of CCR.

  • PDF

Bi-Directional Wireless Power Transfer for Vehicle-to-Grid Systems

  • Sun, Yue;Jiang, Cheng;Wang, Zhihui;Xiang, Lijuan;Zhang, Huan
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1190-1200
    • /
    • 2018
  • A current sourced bi-directional wireless power transfer (WPT) system is proposed to solve the problems that exist in the bi-directional WPT for vehicle-to-grid (V2G) systems. These problems include the fact that these systems are not safe enough, the output power is limited and the control methods are complicated. Firstly, the proposed system adopts two different compensation and control methods on both the primary and secondary sides. Secondly, based on an AC impedance analysis, the working principle is analyzed and the parameter configuration method with frequency stability is given. In order to output a constant voltage, a bi-directional DC/DC circuit and a controllable rectifier bridge are adopted, which are based on the "constant primary current, constant secondary voltage" control strategy. Finally, the effectiveness and feasibility of the proposed methods are verified by experimental results.

An Improved Battery Charging Algorithm for PV Battery Chargers (태양광 배터리 충전기를 위한 개선된 충전 알고리즘)

  • Kim, Jung-Hyun;Jou, Sung-Tak;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.507-514
    • /
    • 2013
  • In this paper, the proposed charging algorithm is converted from the charging mode to compensate the transient state in the solar battery charging system. The maximum power point tracking (MPPT) control methods and the various charging algorithms for the optimal battery charging are reviewed. The proposed algorithm has excellent transient characteristics compare to the previous algorithm by adding the optimal control method to compensate the transient state when the charging mode switches from the constant current mode to the constant voltage mode based on the conventional constant-current constant-voltage (CC-CV) charging algorithm. The effectiveness of the proposed method has been verified by simulations and experimental results.

A New Approach for Constant DC Link Voltage in a Direct Drive Variable Speed Wind Energy Conversion System

  • Jeevajothi, R.;Devaraj, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.529-538
    • /
    • 2015
  • Due to the high efficiency and compact mechanical structure, direct drive variable speed generators are used for power conversion in wind turbines. The wind energy conversion system (WECS) considered in this paper consists of a permanent magnet synchronous generator (PMSG), uncontrolled rectifier, dc-dc boost converter controlled with maximum power point tracking (MPPT) and adaptive hysteresis controlled voltage source inverter (VSI). For high utilization of the converter's power capability and stabilizing voltage and power flow, constant DC-link voltage is essential. Step and search MPPT algorithm which senses the rectified voltage ($V_{DC}$) alone and controls the same is used to effectively maximize the output power. The adaptive hysteresis band current control is characterized by fast dynamic response and constant switching frequency. With MPPT and adaptive hysteresis band current control in VSI, the DC link voltage is maintained constant under variable wind speeds and transient grid currents respectively.

The Control Characteristics of Haenam-Cheju HVDC system at Ground Fault and Steady State (해남-전주 HVDC 계통의 정상상태 및 지락 고장시 제어특성)

  • Kwak, J.S.;Woo, J.W.;Shim, E.B.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1331-1333
    • /
    • 1999
  • In Haenam-Cheju HVDC link several modes of operations and controls are provided, which are constant frequency control, constant power control and constant current control. This paper describes basic control action of converters under three control modes and shows EMTDC simulation results at ground fault and steady state respectively.

  • PDF