• Title/Summary/Keyword: Constant Volume Combustion

Search Result 230, Processing Time 0.024 seconds

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.

Stratified Degree Characteristics on Fuel Mixture According to Ambient Temperature and Pressure in a Constant Volume Combustion Chamber (정적연소기내에서의 분위기 온도 및 압력에 따른 혼합기 분포에 관한 성층화 정도 특성)

  • Lee Kihyung;Lee Changsik;Lee Changhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.180-188
    • /
    • 2005
  • It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption technology, it produces much unburned hydrocarbon and soot because of heterogeneous equivalence ratio in the combustion chamber. Therefore, the stratified mixture formation technology is very important to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The local effect of mixture formation according to control air-fuel distribution in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, we found that the flame propagation speed increase with swirl flow and the swirl promotes the formation of fuel and air mixture.

Effect of the Configuration of Plasma Jet Plug on Combustion Characteristics in a Constant Volume Vessel (플라즈마 제트 플러그의 형상이 정적연소기내 연소특성에 미치는 영향)

  • Kim, Munheon;Yoo, Hoseon;Oh, Byungjin;Park, Jungseo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.593-602
    • /
    • 1999
  • This paper presents combustion characteristics of LPG-air mixture ignited by the plasma jet in a cylindrical vessel with constant volume, in which our focus is placed on the multi-hole plug configuration. Four types of the plug configuration depending on the number of orifice and the arranged angle are considered, along with two cases of conventional spark ignition for comparison. Not only the flame propagation is photographed at intervals, but the pressure in the combustion chamber is also recorded through the entire combustion process. The results show that the plasma jet ignition enhances the overall combustion rate remarkably in comparison to the spark ignition by generating irregular flame front and penetrating through the unburned mixture. The combustion enhancement rate agrees favorably with the available data, which supports the validity of our experiment. Synthetically estimating, the two-hole sixty-degree plug appears to be the most desirable, in that the maximum pressure as well as the combustion duration is less affected by the sub-energy level than the others. It is also deduced that there may exist an optimal plug configuration capable of rapid combustion for a specific combustion chamber.

Analysis of Combustion and Flame Propagation Characteristics of LPG and Gasoline Fuels by Laser Deflection Method

  • Lee, Ki-Hyung;Lee, Chang-Sik;Ryu, Jea-Duk;Park, Gyung-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.935-941
    • /
    • 2002
  • This work is to investigate the combustion characteristics and flame propagation of the LPG (liquified petroleum gas) and gasoline fuel. In order to characterize the combustion processes of the fuels, the flame propagation and combustion characteristics were investigated by using a constant volume combustion chamber The flame propagation of both LPG and gasoline fuels was investigated by the laser deflection method and the high-speed Schlieren photography. The result of laser deflection method show that the error of measured flame propagation speed by laser method is less than 5% compared with the result of high-speed camera. The flame propagation speed of the fuel is increased with the decrease of initial pressure and the increase of initial temperature in the constant volume chamber. The results also show that the equivalence ratio has a grate effect on the flame speed, combustion pressure and the combustion duration of the fuel-air mixture.

Spray and Combustion Characteristics of n-dodecane in a Constant Volume Combustion Chamber for ECN Research (ECN 연구용 고온 고압 정적 연소실에서의 n-dodecane 분무 및 연소 특성)

  • Kim, Jaeheun;Park, Hyunwook;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.188-196
    • /
    • 2014
  • The spray and combustion characteristics of n-dodecane fuel were investigated in a CVCC (constant volume combustion chamber). The selection of ambient conditions for the spray followed ECN (engine combustion network) guidelines, which simulates the ambient condition of diesel engines at start of fuel injection. ECN is a collaboration network whose main objective is to establish an internet library of well-documented experiments that are appropriate for model validation and the advancement of scientific understanding of combustion at conditions specific to engines. Therefore repeatability of the experiments with high accuracy was important. The ambient temperature was varied from 750 to 930 K while the density was fixed at around $23kg/m^3$. The injection pressure of the fuel was varied from 500 to 1500 bar. The spray was injected in both non-reacting ($O_2$ concentration of 0%) and reacting conditions ($O_2$ concentration of 15%) to examine the spray and the combustion characteristics. Direct imaging with Mie Scattering was used to obtain the liquid penetration length. Shadowgraph was implemented to observe vapor length and lift-off length at non-reacting and reacting conditions, respectively. Pressure data was analyzed to determine the ignition delay with respect to the spray and ambient conditions.

A Study on the Combustion Characteristics of Lean Mixture by Radicals Induced Injection in a Constant Volume Combustor (1) (정적연소기에서 라디칼 유도분사를 이용한 희박혼합기의 연소특성에 관한 연구 (1))

  • 박종상;이태원;하종률;정성식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.45-53
    • /
    • 2004
  • An experimental study was carried out to obtain the fundamental data about the effects of radicals induced injection on premixture combustion. A constant volume combustor divided to the sub-chamber and the main chamber was used. The volume of the sub-chamber is set up to occupy less than 1.5% of that of whole combustion chamber. Radial twelve narrow passage holes are arranged between the main chamber and the sub-chamber. The products including radicals generated by spark ignition in the sub-chamber will derive the simultaneous multi-point ignition in the main chamber. While the equivalence ratio of pre-mixture in the main chamber and the sub-chamber is uniform. We have examined the effects of the sub-chamber volume, the diameter of passage hole, and the equivalence ratio on the combustion characteristics by means of burning pressure measurement and flame visualization. In the case of radical ignition method(RI), the overall turning time including the ignition delay became very short and the maximum burning pressure was slightly increased in comparison with those of the conventional spark ignition method(SI), that is, single chamber combustion without the sub-chamber. The combustible lean limit by RI method is extended to more ER=0.25 than that by SI method. Therefore the decrease of every emission including NOx and the improvement of fuel consumption is anticipated due to lean burn.

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (III) - Torch Ignition (1) - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (III) - 토치 점화 (1) -)

  • Kim, Inok;Ohm, Inyong;Kwon, Soon Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • This is the third paper on the combustion characteristics of the landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine. It is the first in this series to discuss the effects of the torch device on combustion. The results show that an optimum orifice ratio exists regardless of the torch volume, and a few adverse effects on the combustion are observed for an excessively small orifice ratio. In addition, the torch ignition decreases the initial burn duration, and the decrease in the heat transfer caused by this decreased duration contributes to an increase in the peak combustion pressure. Finally, the torch mostly plays a positive role in shortening the main burn duration when the combustion condition is worsened by a lower methane fraction. Yet, the torch decreases the initial burn duration rather than the main burn as the methane fraction increases.

The Combustion Characteristics with Supply Conditions of Propane Fuel at the Constant Volume Combustion Chamber (프로판 연료의 공급조건에 따른 정적연소실내 연소 특성에 관한 연구)

  • Park Kyoungsuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1172-1177
    • /
    • 2004
  • The emission control of automobile has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the combustion characteristics of propane mixture. The combustion characteristics was analyzed, with the change of supply conditions of propane fuel. Inside the combustion chamber, the maximum temperature increase with the initial pressure is going up. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux do not change much according to the theoretical correct mixture but it changes with the various initial temperature of the combustion chamber.

Evaluation of Heat Loss by Means of Plasma Jet Ignition during Combustion Duration in the Constant Volume Vessel (정적연소실내에서의 플라즈마 제트 점화에 대한 연소기간중의 열손실산정)

  • 김문헌;문경태;박정서;김홍성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.96-103
    • /
    • 2003
  • In this paper, the heat loss to the constant volume vessel wall was investigated using instantaneous heat flux sensor, schlieren visualization, pressure rise curve. And the heat loss characteristics of plasma jet ignition were compared with conventional spark ignition. In case of plasma jet ignition, the flame kernel moves toward the center of combustion vessel in the initial period of combustion, and the flame surface spread out to the vessel wall. However, in case of conventional spark ignition, the flame surface contact with combustion vessel wall in the initial period of combustion. As a result, heat loss in the combustion duration for conventional spark ignition increase faster than that of plasma jet ignition. And the combustion enhancement rate of plasma jet ignition is higher than that of conventional spark ignition, and it was found that the heat loss rate is inversely proportional to the combustion enhancement rate.