• Title/Summary/Keyword: Constant Temperature Chamber

Search Result 215, Processing Time 0.027 seconds

Fundamental study on combustion characteristics of methanol fuel in a constant volume chamber (정적연소기를 사용한 메탄올의 연소특성에 관한 연구)

  • 이태원;이중순;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.389-396
    • /
    • 1994
  • It is very important to clarify the ignition and flame propagation processes of methanol fuel in the Spark-ignition engine. High speed Schlieren photography and pressure trace analyses were used to study on combustion characteristics of methanol fuel in a constant volume chamber. Methanol-air mixtures equivalence rations from lean limit to 1.4 were ignited at initial pressure (0.1, 0.3, 0.5 MPa), temperature (313 343, 373 K) and ignition energy (40, 180 mJ). As the result of this study, we verified the characteristics such as ignition delay, effective thermal efficiency, flame propagation velocity, lean limit, ignitability and combustion duration. Obatained results are as follows. (1) The time to 10% reach of maximum pressure was 40-50% of the total combustion duration for this experimental condition hardly affected by equivalence ratio. (2) The Effective thermal efficiency, as calculated from maximum pressure was the highest when the mixture was slightly lean $({\phi} 0.8-0.9)$ and maximum pressure was the highest when the mixiture was slightly rich $({\phi} 1.2-1.2).$

A Study on Evaporation Characteristics and Concentration Distribution of LPG fuel using Light Extinction Method (광흡수법을 이용한 LPG 연료의 증발특성 및 연료 농도 분포에 관한 연구)

  • Kim, D.K.;Cho, G.B.;Oh, S.M.;Choi, K.N.;Jeong, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.708-714
    • /
    • 2001
  • Although LP gas has lots of advantages, there has been limitation in application for automotive engine due to the several disadvantages, such as power decrease, complex fuel supply unit, and back fire etc. However LP gas direct injection engine has possibility to solve the problems above mentioned. LEM(Light Extinction Method) was employed for analysis of spacial and temporal distribution of LP gas which is directly injected into combustion chamber under various pressure and temperature conditions. The results from CVC(Constant Volume Chamber) were compared to those of RICEM(Rapid Induction, Compression and Expansion Machine) which simulate early- and late injection of direct injection engine. LPG fuel spray is affected by temperature and pressure in evaporation characteristics but it is more benefit to direct injection engine in every way such as, fuel distribution, evaporating speed and well wetting reduction.

  • PDF

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.

Experimental study of turbulent thermal convection between two flat plates (실험적 방법에 의한 두 평판 사이의 난류 열대류의 해석)

  • 윤효철;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1138-1149
    • /
    • 1988
  • Experiments have been conducted to investigate mean thermal structure in unstable turbulent thermal convection between two horizontal flat plates. The upper plate was kept at a constant cold temperature and the bottom plate at a constant hot temperature. Both air and water were used as its working fluids. Chamber aspect ratios were 3.80 and 6.17, the mean temperature differences between two plates were 2.6-9.3.deg. C, whose Rayleigh numbers in a range 6.13*10$^{5}$ -1, 07*10$^{8}$ . The heat transfer correlations obtained through the experiments are Nu=0.139R $a^{0.285}$ for air and Nu=0.087 R $a^{0.319}$ for water. Profiles of the mean temperature gradient clearly show the -2 and 1 4/3 power law regions.

A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations (UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구)

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial $TiO_2$ and the synthesized vanadium doped $TiO_2$) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ${\sim}20^{\circ}C$ due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.

A Study of the Behavior of Liquid Phase Spray Considering Critical Condition of the Fuel (연료의 임계조건을 고려한 디젤 액상분무거동에 관한 연구)

  • Park, Jong-Sang;Kim, Si-Pom;Chung, Sung-Sik;Ha, Jong-Yul;Yeom, Jeong-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.467-472
    • /
    • 2007
  • In this study the penetration distance of liquid phase fuel(i.e. liquid phsae length) was investigated in evaporative field. An exciplex fluorescence method was applied to the evaporative fuel spray to measure and investigate both the liquid and the vapor phase of the injected spray. For accurate investigation, images of the liquid and vapor phase regions were recorded using a 35mm still camera and CCD camera, respectively. Liquid fuel was injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant-volume chamber under high pressure and temperature in order to visualize the spray phenomena. Experimental results indicate that the liquid phase length decreased down to a certain constant value in accordance with increase in the ambient gas density and temperature. The constant value, about 40mm in this study the, is reached when the ambient density and temperature of the used fuel exceed critical condition.

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Aggregate Ratio of Concrete (잔골재율 변화에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park, Do-kyong;Yoon, Yer-Wan;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2004
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidity. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. Strain Rate of Drying Shrinkage of concrete under the condition of dry air appears to rise by about 20%-30% in proportion as the temperature rises $5^{\circ}C$ when the humidity was held below 10% compared under the condition of dry temperature & Humidity test chamber. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. A general formula with two variables is derived as follow ${\varepsilon}={\alpha}_1+{\beta}_1x_1+{\beta}_2x_2+{\beta}_3x_1^2+{\beta}_5x_2^2$. and also graphed in 3 dimensions, enabling to apply to actual design and predict Strain Rate of Drying Shrinkage in concrete. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as follows. The coefficient of correlation of Drying Shrinkage in Concrete was over 90%.

A study on the electrical characteristics of the fluorocarbon (Fluorocarbon의 전기적 특성연구)

  • 허창수;조한구
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.217-223
    • /
    • 1995
  • In this paper, we investigated physical properties and electrical characteristics of the fluorocarbon that used as coolants for large power gas-insulated transformer. Volume resistivity of the fluorocarbon was .rho.=1.87*10$^{15}$ [.ohm.cm] at 1 atm, 27.deg. C. Dielectric constant was 1.86 and decreases as temperature increase. The breakdown voltage at 1 atm was higher than that of transformer oil. The breakdown voltage of fluorocarbon vapor was about 18kV when pressure in a test chamber increases over lkg/cm$^{2}$. When fluorocarbon was mixed with SF$_{6}$ gas, breakdown voltage of the mixed was higher than that of fluorocarbon. Then fluorocarbon leads to increase over 4kg/cm$^{2}$ in pressure as temperature increase. Therefore, when a gas-insulated transformer is manufactured, the design must be taken into consideration a high-pressure.

  • PDF

Experimental Study of Process Chiller for Semiconductor Temperature Control (반도체 공정 온도제어용 칠러의 실험적 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Oh, Myung-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.459-465
    • /
    • 2011
  • Excessive heat may be generated during the semiconductor manufacturing process. Therefore, precise control of temperature is required to maintain a constant ambient temperature and wafer temperature in the chamber. Compared to an industrial chiller, a semiconductor chiller's power consumption is high because it is in continuous operation for a year. Because of this high power consumption, it is necessary to develop an energy-efficient chiller by optimizing the operation. The competitiveness of domestic products is low because of the high energy consumption. We experimentally investigated a domestic semiconductor by conducting load change, temperature rise and fall, and control precision experiments. The experimental study showed that the chiller had 2.1-3.9 kW of cooling capacity and 0.56-0.93 of EER. The control precisions were ${\pm}1^{\circ}C$ and ${\pm}0.6^{\circ}C$ when the setting temperatures were $0^{\circ}C$ and $30^{\circ}C$ respectively.

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (I) - Fundamental Characteristics - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (I) - 기초 특성 -)

  • Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.733-741
    • /
    • 2013
  • This is the first paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the fundamental characteristics of fuel from the viewpoint of thermochemistry and thermodynamics and compares these results with experimental ones. The results show that the final pressures obtained from theoretical analysis vary under the same heating value owing to the change in the constant volume specific heat owing to the difference in the burned gas composition according to the fuel gas compositions; furthermore, the stoichiometric ratios and trends of analytical and experimental pressures coincide very well, although some minor differences are observed between the two. The root cause of the difference is the heat transfer, which changes the specific heat and lowers the temperature considerably, in the real combustion process. In addition, the large chamber volume and ignition position promote the heat transfer to the wall. Finally, the fuel conversion efficiency increases as the methane mol fraction decreases, and it is maximum when the stoichiometric ratio ranges from 0.8 to 0.9. These increases due to the composition and stoichiometric ratio could sufficiently compensate the decrease due to the specific heat ratio drop, LFG might be more advantageous than pure methane in a real engine.