• Title/Summary/Keyword: Constant Temperature

Search Result 5,125, Processing Time 0.033 seconds

Quality Changes during Storage of Low Salt Fermented Anchovy treated with High Hydrostatic Pressure (초고압 처리한 멸치젓의 저장 중 품질 변화)

  • Lim, Sang-Bin;Jwa, Mi-Kyung;Mok, Chul-Kyoon;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.373-379
    • /
    • 2000
  • Low salt fermented anchovy was stored at $25^{\circ}C$ for a period of 20 days from the time of ultra-high pressure treatment under different operating conditions, such as magnitude of pressure($(200{\sim}500\;MPa)$, temperature$(20{\sim}50^{\circ}C)$ and treatment time$(5{\sim}20\;min)$ with viable cell count(VCC) and quality assessments conducted at regular intervals. VCC decreased logarithmically during storage. Lower values of VCC in the treated samples were observed compared to the untreated. A gradual increase in peroxide value was noticed during storage, compared to those of the untreated which showed a sudden rise. Thiobarbituric acid value decreased initially and remained at that level before rising almost exponentially between 12 and 20 days. Volatile basic nitrogen increased gradually during storage. Amino nitrogen remained almost constant up to 20 days, regardless of any conditions investigated. High pressure treatment maintained better quality during storage at $25^{\circ}C$ by reducing the viable cell count in low salt fermented anchovy.

  • PDF

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions (층류유동 조건에서 SiO2 나노유체의 대류 열전달 특성에 대한 연구)

  • Park, Hyun-Ah;Park, Ji-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.1-11
    • /
    • 2016
  • The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.

A Study of pH, Duty Cycle, Agitation on the Property of Co-deposited TiO2 and Thermal Stability in the Electrodeposited Ni-TiO2 Composite (pH, duty cycle, 교반, 첨가제가 Ni-TiO2 전기도금 복합체의 TiO2 공석특성과 열적안정성에 미치는 영향 연구)

  • Kim, Myong-Jin;Kim, Joung-Soo;Kim, Dong-Jin;Kim, Hong-Pyo;Hwang, Seong-Sik
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.97-105
    • /
    • 2012
  • The effects of pH, types of applied current, agitation method and time, additive on the amount of co-deposited $TiO_2$ particles in the matrix were investigated. The deposition rates increased with increasing pH values, while the volume fraction of $TiO_2$ particles and the size of agglomerated $TiO_2$ particles in the composite decreased. The volume fraction of $TiO_2$ particles in the composite decreased when pulsed current of 50% duty cycle was used. And the size of agglomerated $TiO_2$ particles in the nickel matrix of pulsed current was smaller than that of DC current specimen. The volume fraction of $TiO_2$ particles in the matrix decreased with longer time by air agitation, but in case of using magnetic bar, volume fraction in the same range of time was relatively constant. The volume fraction of the electrodeposited Ni-$TiO_2$ composite in the solution containing 0.01 M Dimethylamine borane (DMAB) increased slightly with increasing agitation time regardless of agitation methods. Thermal stability of the electrodeposited Ni-$TiO_2$ composite increased with lower pH at the temperature range of $200{\sim}800^{\circ}C$, and the results showed that the amount of co-deposited $TiO_2$ relies more on the deposition rate than zetapotential of $TiO_2$ particles.

A study for High Efficiency Dewatering of Sludge Contained Fine Particles (미세입자(微細粒子)를 함유(含有)한 슬러지의 고효율(高效率) 탈수(脫水) 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.36-43
    • /
    • 2006
  • There was some difficulty dewatering properties due to small porosity diameter of cake, when pigment sludge contained fine particle was formed by cake under the dewatering. It was difficult to dewater the sludge with fine particles with the conventional mechanical dewatering method. This study was to improve the dewatering rate as discharging the water from porosity of cake easily, supplying the low heat to the cake layer. Thermal dewatering equipment of piston type to keep up constant temperature on the cake was set up and relative experiment was conducted for sludge of 200 g with fine pigment particle. As test results. filtration of 176.8 g, cake weight of 19.4 g, cake thickness of 4.2 mm was measured, and it was analyzed that the water content of cake was 47 wt% and dewatering velocity, which moaned the residual d교 sloid amount per dewatering area, was $2.1DS\;m^{2}{\cdot}cycle$. This results showed that filtration increased, cake weight and thickness decreased and dewatering velocity increased against mechanical dewatering method. And water content of cake decreased about 30%, so the result which dewatering rate improved was drew generally. The reason is that the inner vapor pressure working at the cake porosity increased as applying the low heat to the cake layer, which lead to discharge the water from porosity easily. Therefore, this study was estimated by the useful technology for sludge reduction.

Thermal and Optical Properties of Poly{1-(Cholesteryloxycarbonylalkanoyloxy)ethylene}s (폴리{1-(콜레스테릴옥시카보닐알카노일옥시)에틸렌}들의 열 및 광학 특성)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.144-152
    • /
    • 2009
  • The thermal and optical properties of poly {1-(cholesteryloxycarbonylalkanoyloxy) ethylene}s (PCALEn, n=2$\sim$8,10, the number of methylene units in the spacer) were investigated. All of the homologues formed monotropic cholesteric phases with left-handed helical structures. PCALEn with n=2 or 10, in constrast with PCALEn with $3{\leq}n{\leq}8$, did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer connecting the cholesteryl group to the polyethylene chain. The glass transition temperatures decreased with increasing n. The isotropic-cholesteric phase transition temperatures decreased with increasing n up to 7 and showed an odd-even effect. However it became almost constant when n is more than 7. This behavior is rationalized in terms of the change in the average shape of the side chain on varing the parity of the spacer. This rationalization also accounts for the observed variation of the entropy gain for the clearing transition. The thermal stability and degree of order in the mesophase and the temperature dependence of the optical pitch observed for PCALEn were significantly different from those reported for cellulose tri(cholesteryloxycarbonyl)alkanoates. The results were discussed in terms of the differences in the chemical structure and flexibility of main chain and the number of the mesogenic units per repeating unit.

Development of Primary Reference Gas Mixtures for Liquid Propane (혼합 액체 프로판 표준가스 개발)

  • Jeong, Yun-sung;Kim, Jin-seog;Bae, Hyun-kil;Kang, Ji-hwan;Lee, Seung-ho;Kim, Yong-doo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • Liquefied Petroleum Gas is divided into liquefied gases containing propane (C3H8) and butane (C4H10). The quality of LPG varies greatly depending on the composition of the mixture, so it is important to measure the composition accurately. It is difficult to determine the composition of the mixture because liquid and gas coexist at room temperature. Therefore, the uncertainty in determining the concentration of hydrocarbons by component is high, and there are many problems that differ from the actual content standard. Therefore, it is necessary to develop a mixed liquid propane standard gas for the composition and accurate concentration of hydrocarbon substances. Mixed liquid propane standard gas is manufactured into bellows-type constant-pressure cylinders by ISO-6142 (2015). The homogeneity of the four standard gases manufactured was confirmed to be GC-FID. The manufacturer's uncertainty of expansion was 0.01 % to 0.30 % and homogeneity was 0.03 % to 0.25 %. In this mixed liquid propane standard gas, the relative expansion uncertainty of weight method, manufacturing consistency, cylinder adsorption and long-term stability was developed within 0.26 %-1.3 9% (95% of confidence level, k=2).

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

Biological Traits of the Lesser Strawberry Aphid (Chaetosiphon minus) in Strawberry under Plastic Houses (딸기 재배하우스에 발생하는 애못털진딧물(Chaetosiphon minus)의 생물적 특성)

  • Kwon, Gi-Myon;Lee, Hyung-Keun;Heo, Yu Ri;Hong, Ki-Jeong
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.215-220
    • /
    • 2021
  • To establish the systematic biological control system for various insect pests in strawberry under plastic houses, we were investigated the biological traits of lesser strawberry aphid, Chaetosiphon minus (Forbes), as a target pest. The lesser strawberry aphid is adapted to low temperatures while examining the availability of and selecting useful natural enemies. The development, survivorship and reproduction of lesser strawberry aphid were evaluated at four constant temperatures (10, 15, 20, and 25℃). The developmental periods of the nymphal stages ranged from 41.7 d at 10℃ to 9.8 d at 25℃. The developmental threshold temperature and degree day of nymphal stages are 5.5℃ and 185 DD. The reproduction rate (R0) was higher at 20℃ (30.16) than at 25℃ (22.38). The 50 % survival rate and maximum longevity of adult females were 31 d and 59 d at 20℃, and 25 d and 36 d at 25℃, respectively. The average progeny per female was 35 at 20℃, and 26 at 25℃. We confirmed that compared to other strawberry aphids under plastic houses, the lesser strawberry aphid is more adapted to lower temperatures. It is, therefore, necessary to commercialize natural enemies such as syrphid flies with high activity at low temperatures.

Changes of carbon-13 Isotope of Dissolved Inorganic Carbon Within Low-pH CO2-rich Water during CO2 Degassing (pH가 낮은 탄산수의 CO2 탈기에 따른 용존탄소동위원소 변화)

  • Chae, Gitak;Yu, Soonyoung;Kim, Chan Yeong;Park, Jinyoung;Bang, Haeun;Lee, Inhye;Koh, Dong-Chan;Shinn, Young Jae;Oh, Jinman
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.3
    • /
    • pp.24-35
    • /
    • 2019
  • It is known that ${\delta}^{13}C_{DIC}$ (carbon-13 isotope of dissolved inorganic carbonate (DIC) ions) of water increases when dissolved $CO_2$ degases. However, ${\delta}^{13}C_{DIC}$ could decrease when the pH of water is lower than 5.5 at the early stage of degassing. Laboratory experiments were performed to observe the changes of ${\delta}^{13}C_{DIC}$ as $CO_2$ degassed from three different artificial $CO_2$-rich waters (ACWs) in which the initial pH was 4.9, 5.4, and 6.4, respectively. The pH, alkalinity and ${\delta}^{13}C_{DIC}$ were measured until 240 hours after degassing began and those data were compared with kinetic isotope fractionation calculations. Furthermore, same experiment was conducted with the natural $CO_2$-rich water (pH 4.9) from Daepyeong, Sejong City. As a result of experiments, we could observe the decrease of DIC and increase of pH as the degassing progressed. ACW with an initial pH of 6.4, ${\delta}^{13}C_{DIC}$ kept increasing but, in cases where the initial pH was lower than 5.5, ${\delta}^{13}C_{DIC}$ decreased until 6 hours. After 6 hours ${\delta}^{13}C_{DIC}$ increased within all cases because the $CO_2$ degassing caused pH increase and subsequently the ratio of $HCO_3{^-}$ in solution. In the early stage of $CO_2$ degassing, the laboratory measurements were well matched with the calculations, but after about 48 hours, the experiment results were deviated from the calculations, probably due to the equilibrium interaction with the atmosphere and precipitation of carbonates. The result of this study may be not applicable to all natural environments because the pressure and $CO_2$ concentration in headspace of reaction vessels was not maintained constant as well as the temperature. Nevertheless, this study provides fundamental knowledge on the ${\delta}^{13}C_{DIC}$ evolution during $CO_2$ degassing, and therefore it can be utilized in the studies about carbonated water with low pH and the monitoring of geologic carbon sequestration.

Temperature-dependent Longevity and Fecundity of Propylea japonica Thunberg (Coleoptera: Coccinellidae) and Its Predation Amount on Two Aphid Species (꼬마남생이무당벌레(Propylea japonica Thunberg)의 온도별 성충 수명, 산란수 및 두 종 진딧물에 대한 포식량)

  • Park, Bueyong;Jeong, In-Hong;Kim, Gil-Hah;Jeon, Sung-Wook;Lee, Sang-Ku
    • Korean journal of applied entomology
    • /
    • v.58 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • This study was conducted to investigate the developmental characteristics of Propylea japonica Thunberg (Coleoptera: Coccinellidae) and its consumption of Myzus persicae nymphs at 3 constant temperatures (20.0, 25.0 and $30.0^{\circ}C$; $60{\pm}5%$ relative humidity; 14 h light : 10 h dark). The longevity of adult female P. japonica under 20, 25, and $30^{\circ}C$ was 134.0, 101.0 and 55.2 days, respectively. The total fecundity was 508.6, 875.6, and 383.4 eggs during its life span, respectively. The longevity of adult male P. japonica under 20, 25, and $30^{\circ}C$ was 128.8, 97.8, and 46.5 days, respectively. Average daily consumption of adult M. persicae by 1st, 2nd, 3rd, and 4th instar P. japonica at $25^{\circ}C$ was 2.2, 7.3, 14.5, and 29.1, respectively. The average daily number of M. persicae consumed by male and female P. japonica over their lifetimes was 35.0 and 42.9, respectively. Average daily consumption of adult Aphis gossypii by 1st-4th instar P. japonica at $25^{\circ}C$ was 2.2, 7.5, 13.9, and 29.5, respectively. The average daily number of A. gossypii consumed by male and female P. japonica over their lifetimes was 37.0 and 40.8, respectively.