Browse > Article
http://dx.doi.org/10.5762/KAIS.2016.17.9.1

Investigation of Convective Heat Transfer Characteristics of Aqueous SiO2 Nanofluids under Laminar Flow Conditions  

Park, Hyun-Ah (Metropolitan Transportation Research Center, Korea Railroad Research Institute)
Park, Ji-Hyun (Metropolitan Transportation Research Center, Korea Railroad Research Institute)
Jeong, Rag-Gyo (Metropolitan Transportation Research Center, Korea Railroad Research Institute)
Kang, Seok-Won (Metropolitan Transportation Research Center, Korea Railroad Research Institute)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.17, no.9, 2016 , pp. 1-11 More about this Journal
Abstract
The effect of the migration of nanoparticles near the wall of a channel on the convective heat transfer in a laminar flow of $SiO_2$ nanoparticle suspensions (nanofluids) under constant wall heat flux boundary conditions was numerically and experimentally investigated in this study. The dynamic thermal conductivity of the aqueous $SiO_2$ nanofluids was measured using T-type thermocouples attached to the outer surface of a stainless steel circular tube (with a length of 1 m and diameter of 1.75 mm). The nanofluids used in this study were synthesized by dispersing $SiO_2$ spherical nanoparticles with a diameter of 24 nm in de-ionized water (DIW). The enhancement of the thermal conductivity of the nanofluids (e.g., an increase of up to 7.9 %) was demonstrated by comparing the temperature profiles in the flow of the nanofluids with that in the flow of the basefluids (i.e., DIW). However, this trend was not demonstrated in the computational analysis, because the numerical models were based on continuum assumptions and flow features involving nanoparticles in a stable colloidal solution. Thus, to explore the non-continuum effects, such as the modification of the morphology caused by nanoparticle-wall interactions on the heat exchanging surfaces (e.g., the isolated and dispersed precipitation of the nanoparticles), additional experiments were performed using DIW right after the measurements using the nanofluids.
Keywords
Dynamic thermal conductivity; Heat transfer; Laminar flow; Nanofluids; Nanoparticles;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, "Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of ${\gamma}$ -$TiO_2$, TEX>$SiO_2$ and $TiO_2$ ultra-fine particles)", Netsu Bussei, vol. 7, pp. 227-233, 1993. DOI: http://dx.doi.org/10.2963/jjtp.7.227   DOI
2 S. Ozerinc, S. Kakac, A.G. Yazicioglu, "Enhanced thermal conductivity of nanofluids: a state-of-the-art review", Microfluid. Nanofluid., vol. 8, pp. 145-170, 2010. DOI: http://dx.doi.org/10.1007/s10404-009-0524-4   DOI
3 A. Vatani, P. L. Woodfield, D.V. Dao, "A Survey of practical equations for prediction of effective thermal conductivity of spherical-particle nanofluids", J. Mol. Liq., vol. 211, pp. 712-733, 2015. DOI: http://dx.doi.org/10.1016/j.molliq.2015.07.043   DOI
4 L. Godson, B. Raja, D. Mohan Lal, S. Wongwises, "Enhancement of heat transfer using nanofluids-An overview", Renew. Sust. Energ. Rev., vol. 14, pp. 629-641, 2010. DOI: http://dx.doi.org/10.1016/j.rser.2009.10.004   DOI
5 J. T. Kwon, T. H. Nahm, T. W. Kim, Y.C. Kwon, "An Experimental Study on Pressure Drop and Heat Transfer Coefficient of Laminar Ag Nanofluid flow in Mini Tubes", Journal of the Korea Academia-Industrial cooperation Society, vol. 10, pp. 3525-3532, 2009.   DOI
6 Y. G. Kim, S. H. Jo, Y. J. Seong, H. S. Chung, H.M. Jeong, "Experimental investigation of heat transfer characteristics of alumina nanofluid", Journal of the Korean Society of Marine Engineering, vol. 37, pp. 16-21, 2013. DOI: http://dx.doi.org/10.5916/jkosme.2013.37.1.16   DOI
7 L. Yu-Hua, Q. Wei, F. Jian-Chao, F., "Temperature Dependence of Thermal Conductivity of Nanofluids", Chinese. Phys. Lett., vol. 25, pp. 3319-3322, 2008. DOI: http://dx.doi.org/10.1088/0256-307X/25/9/060   DOI
8 C.H. Li, G.P. Peterson, "Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)," J. Appl. Phys., vol. 99, pp. 084314, 2006. DOI: http://dx.doi.org/10.1063/1.2191571   DOI
9 M. Chopkar, S. Sudarshan, P.K. Das, I. Manna, "Effect of particle size on thermal conductivity of nanofluid", Metall. Mater. Trans. A, vol. 39, pp.1535-1542, 2008. DOI: http://dx.doi.org/10.1007/s11661-007-9444-7   DOI
10 H. Xie, J. Wang, T. Xi, Y. Liu, "Thermal Conductivity of Suspensions Containing Nanosized SiC Particles," Int. J. Thermophys., vol. 23, pp.571-580, 2002. DOI: http://dx.doi.org/10.1023/A:1015121805842   DOI
11 Y.S. Na, K.D. Kihm, J.S. Lee, "ReD-dependence of Dynamic Thermal Conductivities of Nanofluids," Int. J. Heat Mass Tran., vol. 55, pp. 7933-7940, 2012. DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.08.026   DOI
12 S.J. Kline, F.A. McClintock, "Describing uncertainties in single sample experiments", Mechanical Engineering, vol. 75, pp. 3-8, 1953.
13 G.S. McNab, A. Meisen, "Thermophoresis in Liquids" J. Colloid Interf. Sci., vol. 44, pp. 339-346, 1973. DOI: http://dx.doi.org/10.1016/0021-9797(73)90225-7   DOI
14 S.M.S. Murshed, K.C. Leong, C. Yang, "Investigations of thermal conductivity and viscosity of nanofluids", Int. J. Therm. Sci., vol. 47, pp. 560-568, 2008. DOI: http://dx.doi.org/10.1016/j.ijthermalsci.2007.05.004   DOI
15 C. Kleinstreuer, Y. Feng, "Thermal nanofluid property model with application to nanofluid flow in a parallel-disk system-Part I: A new thermal conductivity model for nanofluid flow", J. Heat Transf., vol. 134, pp. 051002, 2012. DOI: http://dx.doi.org/10.1115/1.4005632   DOI