Browse > Article
http://dx.doi.org/10.5695/JKISE.2012.45.3.097

A Study of pH, Duty Cycle, Agitation on the Property of Co-deposited TiO2 and Thermal Stability in the Electrodeposited Ni-TiO2 Composite  

Kim, Myong-Jin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
Kim, Joung-Soo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
Kim, Dong-Jin (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
Kim, Hong-Pyo (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
Hwang, Seong-Sik (Nuclear Materials Research Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of the Korean institute of surface engineering / v.45, no.3, 2012 , pp. 97-105 More about this Journal
Abstract
The effects of pH, types of applied current, agitation method and time, additive on the amount of co-deposited $TiO_2$ particles in the matrix were investigated. The deposition rates increased with increasing pH values, while the volume fraction of $TiO_2$ particles and the size of agglomerated $TiO_2$ particles in the composite decreased. The volume fraction of $TiO_2$ particles in the composite decreased when pulsed current of 50% duty cycle was used. And the size of agglomerated $TiO_2$ particles in the nickel matrix of pulsed current was smaller than that of DC current specimen. The volume fraction of $TiO_2$ particles in the matrix decreased with longer time by air agitation, but in case of using magnetic bar, volume fraction in the same range of time was relatively constant. The volume fraction of the electrodeposited Ni-$TiO_2$ composite in the solution containing 0.01 M Dimethylamine borane (DMAB) increased slightly with increasing agitation time regardless of agitation methods. Thermal stability of the electrodeposited Ni-$TiO_2$ composite increased with lower pH at the temperature range of $200{\sim}800^{\circ}C$, and the results showed that the amount of co-deposited $TiO_2$ relies more on the deposition rate than zetapotential of $TiO_2$ particles.
Keywords
Electrodeposition Ni-$TiO_2$; Agitation method and time; DMAB; Thermal stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. K. Sinha, N. Dhananjayan, H. K. Chakrabarti, Plating, (1973).
2 E. S. Chen, F. K. Sautter, Plating and Surface Finishing, 28 (1976).
3 J. Zahavi, J. Hazan, Plating and Surface Finishing (1983) 57.
4 K.-N. Sun, X.-N. Hu, J.-H. Zhang, J.-R. Wang, Wear, 196 (1996) 295.   DOI
5 C. S. Lin, C. Y. Lee, C. F. Chang, C. H. Chang, Surf. Coat. Technol., 200 (2006) 3690.   DOI
6 M. J. Kim, J. S. Kim, D. J. Kim, H. P. Kim, Metals and Mater Int., 15(5) (2009) 789.   DOI
7 B. Szczygiel, M. Kolodziej, Electrochimica Acta 50 (2005) 4188.   DOI   ScienceOn
8 T. Lampke, A. Leopold, D. Dietrich, G. Alisch, B. Wielage, Surf. Coat. Technol., 201 (2006) 3510.   DOI   ScienceOn
9 F. K. Sautter, J. Electrochem. Soc., 110(3) (1963) 557   DOI
10 G. R. Lakshminarayanan, E. S. Chen, F. K. Sautter, Plating and Surface Finishing, (1976).
11 M. Ghouse, M. Viswanathan, E. G. Ramachandran, Metal Finishing, 31 (1980).
12 A. Moller, H. Hahn, Nanostructured Materials, 12 (1999) 259.   DOI   ScienceOn
13 C. Kollia, C. Patta, P. Vassiliou, V. Kasselouri, Rev. Metal. Madrid Vol. Extr., (2005) 227.
14 J. L. Stojak, J. Fransaer, J. B. Talbot, Adv. Electrochem. Sci. Eng., 7 (2001) 193.
15 V. O. Nwoko, L. L. Shreir, J. Appl. Electrochem. 3 (1973) 137.   DOI   ScienceOn
16 C. White, J. Foster, Transactions of the Institute of Metal Finishing, 56 (1978).
17 E. S. Chen, G. R. Lakshminarayanan, F. K. Sautter, Metallurgical Transactions, 2 (1971) 937.   DOI
18 T. W. Tomaszewski, L. C. Tomaszewski, H. Brown, Plating, (1969) 1234.
19 C. C. Lee, C. C. Wan, J. Electrochem. Soc., 135(8) (1988) 1930.   DOI
20 P.-A. Gay, P. Bercot, J. Pagetti, Surf. Coat. Technol., 140 (2001) 147.   DOI   ScienceOn
21 M. Kosmulski, J. Colloid. Interface Sci., 298 (2006) 730.   DOI
22 H. Simunkova, P. P. Garcia, J. Wosik, P. Angerer, H. Kronberger, G. E. Nauer, Surf. Coat. Technol., 203 (2009) 1806.   DOI
23 M. H. Fawzy, M. M. Ashour, A. E.-H. M. A. El- Halim, J. Chem. Tech. Biotechno., 66 (1996) 121.   DOI
24 J. Foster, B. Cameron, Transactions of the Institute of Metal Finishing, 54 (1976) 178.   DOI
25 N. Gulielmi, J. Electrochem. Soc., 119(8) (1972) 1009.   DOI
26 J. P. Celis, J. R. Roos, C. Buelens, J. Electrochem. Soc. 134(6) (1987) 1402.   DOI
27 F. Hou, W. Wang, H. Guo, Appl Surf. Sci., 252 (2006) 3812.   DOI   ScienceOn
28 P. W. Martin, Grad. Inst. P., Metal Finishing, 11(130) (1965) 409.
29 P. R. Webb, N. L. Robertson, J. Electrochem. Soc., 141(3) (1994) 669.   DOI
30 N. S. Qu, K. C. Chan, D. Zhu, Scripta Materialia, 50 (2004) 1131.   DOI
31 D. Lee, Y. X. Gan, X. Chen, J. W. Kysar, Mater. Sci. Eng. A, 447 (2007) 209.   DOI   ScienceOn
32 M. Kosmulski, J. B. Rosenholm, J. Phys. Chem., 100 (1996) 11681.   DOI
33 F. Pearlstein, R. F. Weightman, J. Electrochem. Soc., 121(8) (1974) 1023.   DOI
34 L. D. Burke, B. H. Lee, J. Appl. Electrochem., 22 (1992) 48.   DOI
35 A. Chiba, H. Haijima, K. Kobayashi, Surf. Coat. Technol., 169-170 (2003) 104.   DOI
36 M. N. Joshi, M. Totlani, J. Electrochem. Soc. India, 28(1) (1979) 35.
37 M. H. Seo, D. J. Kim, J. S. Kim, Thin Solid Films, 489 (2005) 122.   DOI   ScienceOn
38 M. H. Seo, D.-J. Kim, J. S. Kim, Metals and Mater Int., 13(5) (2007) 365.   DOI