• Title/Summary/Keyword: Constant DC-link voltage

Search Result 50, Processing Time 0.022 seconds

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

Double Two Switch Forward Transformer-Linked Soft-Switching PWM DC-DC Power Converter with Tapped Inductor Filters

  • Moisseev Serguei;Koudriavtsev Oleg;Hiraki Eiji;Nakamura Mantaro;Nakaoka Mutsuo;Hamada Satoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a novel circuit topology of the double two-switch forward type high frequency transformer linked soft-switching PWM DC-DC power converter with tapped inductor filters that can operate under a condition of the low peak voltage stress across the power semiconductor devices and lowered peak current stress through the transformer for some high power applications. This circuit topology of an interleaved two-switch forward soft-switching power converter is proposed in the order to minimize an idle circulating current due to the tapped inductor filter without of any additional active auxiliary resonant-assisted snubber circuits, such as active resonant DC link snubbers and AC link snubbers, active resonant commutation leg link snubbers. The unique advantages of this power converter are less power circuit components and power semiconductor devices, constant frequency PWM scheme, cost effective configuration and wider soft-switching PWM operation range under PWM power regulations load variations. The practical effectiveness of the proposed soft-switching converter circuit topology is tested by simulations and is proved by experimental results received from the 500W-100kHz breadboard setup.

  • PDF

Direct Power Control of PMa-SynRG with Back-to-back PWM Voltage-fed Drive

  • Baek, Jeihoon;Kwak, Sangshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.761-768
    • /
    • 2018
  • In this paper, the performance analysis of a control topology based on the direct output power control (DPC) for robust and inexpensive permanent magnet-assisted synchronous reluctance generator (PMa-SynRG) system is presented. The PMa-SynRG might be coupled to an internal combustion engine running at variable speed. A three-phase PWM rectifier rectifies the generator output and supplies the dc link. A single-phase PWM inverter supplies constant ac voltage at constant frequency to the grid. The overall control algorithm is implemented on a TMS320F2812 digital signal processor board. Simulations results and experimental results verify the operation of the proposed system.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF

A Modified Sapce-Vector PWM Inverter without Phase Current Sensors

  • Joo, Hyeong-Gil;Shin, Hwi-Beom;Oh, In-Hwan;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.86-91
    • /
    • 1997
  • A method of detecting the three phase currents for a voltage-fed pusle width modulated(PWM) inverter is proposed, where only one current sensor is utilized on the dc-link. The proposed method has the constant sampling time by employing he modified space-vector PWM technique which generates the rearranged switching pattern to detect a phase current from ad dc-link current. Experimental results show that eh proposed scheme provides a very good detection method of three phase currents without phase current sensors. This method is very simple and has small detection errors.

  • PDF

An Application of Proportional-Resonant Controller in MMC-HVDC System under Unbalanced Voltage Conditions

  • Quach, Ngoc-Thinh;Ko, Ji-Han;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1746-1752
    • /
    • 2014
  • This paper presents an application of proportional-resonant (PR) current controllers in modular multilevel converter-high voltage direct current (MMC-HVDC) system under unbalanced voltage conditions. The ac currents are transformed and controlled in the stationary reference frame (${\alpha}{\beta}$-frame). Thus, the complex analysis of the positive and negative sequence components in the synchronous rotating reference frame (dq-frame) is not necessary. With this control method, the ac currents are kept balanced and the dc-link voltage is constant under the unbalanced voltage fault conditions. The simulation results based on a detailed PSCAD/EMTDC model confirm the effectiveness of the proposed control method.

A High Efficiency Converter for Battery Hybrid Power System of Electric Vehicles (전기자동차의 배터리 하이브리드 전원시스템용 고효율 컨버터)

  • Tran, Dai-Duong;Lee, Hyun-Hwa;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.333-334
    • /
    • 2016
  • This paper proposes a new cascoded configuration for hybrid energy storage system (HESS) which consists of batteries and supercapacitor (SC) for Electric Vehicle applications. In this configuration,a resonant LLC converter is interfacedin series with a battery module and it converts a part of the energy from the batteries and transfer it to the dc-link bus. The LLC converter is controlled by a phase-shift angle between the primary and secondary switches to maintain a constant dc-link voltage and obtain soft-switching conditions for all the primary switches. By placing the SC moduleina cascoded concept, the rated voltage of SC can be reduced significantly compared with the conventional topologies. It helps save the cost and reduce the number of SC cells. The proposed configuration can operate with four different modes: feeding load, acceleration, regenerative braking andSC charging. A scaled-down prototype converter (2 kW, 600V output) is designed and tested to verify the advantages of the proposed topology. The maximum efficiency obtained with the proposed topology is 99%.

  • PDF

Control Method of NPC Inverter for the Continuous Operation under One Phase Fault Condition (3상 NPC 인버터의 한상 고장시 연속적인 운전을 위한 제어기법)

  • Park Geon-Tae;Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • The topology of NPC inverter coupled with the large number of devices used increases the probability of device failure. It's necessary to develop an optimal remedial strategy which can be used to continue the application when fault occurs. The fault tolerance is obtained by the use of the proposed method. The proposed method utilizes that the one phase load with the failed power device could be connected to the center-tap of the DC-link capacitor in order to dc-link voltage with balance and the sinusoidal phase current with constant amplitude under the single power device fault condition. The strategy described in this paper is expected to provide an economic alternative to more expensive redundancy techniques.

The Inverter Control Method Using The Voltage Sag Compensation algorithm (순간전압강하 보상 알고리즘을 이용한 인버터 제어에 관한 연구)

  • Yun, Hong-Min;Bae, Jin-Yong;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.62-67
    • /
    • 2012
  • In this paper general purpose voltage source inverter drives are equipped with an under-voltage protection mechanism, causing the system to shut down within a few milliseconds after a power interruption in the main input sources. When a power interruption occurs finish, if the system is a large inertia restarting the load a long time is required. This paper suggests modifications in the control algorithm in order to improve the sag ride-through performance of ac inverter. The new proposed strategy recommends maintaining the DC-link voltage constant at the nominal value during a sag control algorithm, experimental results are presented.

The Characteristics of New Current Source GTO Inverter with Double Recovery Path of Commutation Energy (전류(轉流)에너지 2중 궤환방식 새로운 전류형 GTO 인버터의 특성)

  • Choi, Sang-Won;Kim, Jin-Pyo;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.435-437
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC link inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter. We used a induction motor as the load of inverter, and controlled a induction motor with V/F constant control. Experimental results show that dissipated DC power is decreased and capacitor voltage Vc is effectively suppressed by double recovery path.

  • PDF