• Title/Summary/Keyword: Consolidation settlement of clay

Search Result 211, Processing Time 0.023 seconds

Vacuum Consolidation on Highly Compressible Soil (고 압축성 토질에서의 진공압밀)

  • 정연인
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-24
    • /
    • 1995
  • Laboratory testings, consisting of soil properties testing and vacuum consolidation testing with and without vertical wick drain, were carried out on five different types of soil to determine soil properties and relationship between settlement and time. One dimensional consolidation teat was performed to determine if this test could be used for predicting the behavior of soils during vacuum consolidation. From the results of this study, the one dimensional consolidation test does not appear to be suitable for predicting the rate of vacuum consolidation without wick drain. However, one dimensional consolidation test reasonably predicts the total settlement of vacuum consolidation without wick drain. In vacuum consolidation, the amount of the settlement for silty soils were more or less the same for both cases, with wick drain and without wick drain, even if the time required for consolidation was considerably different. And, strategic placement of wick drain ensures moisture content and the value of the density are similar throughout the soil sample. However, the presence of wick drain for clay Boils increased the amount of settlement and also shortened the time required for consolidation.

  • PDF

Estimation of Degree of Consolidation in Soft Ground Using Field Measurements and Rheology Model (현장 계측치와 유변학적 모형을 이용한 연약지반의 압밀도 추정)

  • Lee, Dal-Won;Yoon, Hyun-Jung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.87-96
    • /
    • 2005
  • In this research, an attempt is made to derive the practical estimation of the degree of consolidation in soft clay from field measurements under embankments. For the practical estimation of pore water pressure in soft clay, the elasto-viscous rheological model was proposed, with a transform of parameters and a field geotechnical measurements in southern Korea. By using the rheological properties of soft clays and the dissipation of excess pore water pressure behaviour during step loading, a degree of consolidation or pore water pressure estimation in the future can be performed, and are shown to be generally close to the field measurements of pore water pressure. Finally, a pore water pressure behaviour in soft clay can be explained through measured data in field and the excess pore water pressure data can also be used to estimate settlement.

A case study on the theoretical and practical applications of the secondary compression index (2차압축지수의 이론과 적용사례 연구)

  • Kim, Sung-In;Lee, Jae-Weon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.363-372
    • /
    • 2007
  • The residual settlement due to difference between predicted and observed settlement is one of the social problems during reclaiming construction in the soft ground having a deep depth such as Busan and Gwangyang province. Prediction error for the secondary compression settlement makes the construction much harder. To examine characteristics of the secondary compression settlement, the secondary compression index is the most important factor. In this study, various empirical methods for determining the secondary compression index are evaluated. And errors applied to the design case practically are also explained. The pre loading method is the only way to reduce the secondary compression settlement and reduction ratio of the secondary compression should be investigated correctly. Hence, research results on the reduction ratio of the secondary compression are analyzed in this paper. Moreover, decrement of the secondary compression index due to over consolidation ratio is examined closely by laboratory consolidation test using clay in the Gwangyang area.

  • PDF

A novel modeling of settlement of foundations in permafrost regions

  • Wang, Songhe;Qi, Jilin;Yu, Fan;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-245
    • /
    • 2016
  • Settlement of foundations in permafrost regions primarily results from three physical and mechanical processes such as thaw consolidation of permafrost layer, creep of warm frozen soils and the additional deformation of seasonal active layer induced by freeze-thaw cycling. This paper firstly establishes theoretical models for the three sources of settlement including a statistical damage model for soils which experience cyclic freeze-thaw, a large strain thaw consolidation theory incorporating a modified Richards' equation and a Drucker-Prager yield criterion, as well as a simple rheological element based creep model for frozen soils. A novel numerical method was proposed for live computation of thaw consolidation, creep and freeze-thaw cycling in corresponding domains which vary with heat budget in frozen ground. It was then numerically implemented in the FISH language on the FLAC platform and verified by freeze-thaw tests on sandy clay. Results indicate that the calculated results agree well with the measured data. Finally a model test carried out on a half embankment in laboratory was modeled.

Improvement of soft clay at a site in the Mekong Delta by vacuum preloading

  • Quang, N.D.;Giao, P.H.
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.419-436
    • /
    • 2014
  • Soil improvement by preloading with PVD in combination with vacuum is helpful when a considerable load is required to meet the desired rate of settlement in a relative short time. To facilitate the vacuum propagation, vertical drains are usually employed in conjunction. This ground improvement method is more and more applied in the Mekong delta of Vietnam to meet the needs of fast infrastructure development. This paper reports on a pilot test that was carried out to investigate the effect of ground improvement by vacuum and PVD on the rate of consolidation at the site of Saigon International Terminals Vietnam (SITV) in Ba Ria-Vung Tau Province, Viet Nam. Three main aspects of the test will be presented, and namely, instrumentation and field monitoring program, calculation of consolidation settlement and back-analysis of soil properties to see the difference before and after ground improvement.

Consolidation Characteristics of Soft Ground with Artesian Pressure (피압에 따른 연약지반의 압밀 거동)

  • Yun, Daeho;Kim, Jaehong;Kim, Yuntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Vertical drain has usually been used to accelerate the consolidation of soft clay deposits with high moisture content. Busan thick clay deposits are subjected to artesian pressure from an aquifer in sand and gravel layers. However, effect of artesian pressure existing in drainage-installed soft ground on consolidation behaviors is not well known. This paper investigates the consolidation behavior of drainage-installed soft ground at the Nakdong river estuary with artesian pressure and without artesian pressure. A series of one-dimensional large size column test was carried out to find out the consolidation characteristics of clay. Test results indicated that total settlement of clay with artesian pressure was higher than that without artesian pressure because effective stress decreased due to upward flow. Dissipation rate of excess pore water pressure delayed and excess pore water pressure did not fully dissipate in clay layer with artesian pressure. Undrained shear strength of clay ground with artesian pressure was lower than that without artesian pressure.

Centrifuge Modeling of Soft Clay with Vertical Drains Considering the Centrifuge Similarity (상사성을 고려한 배수재 설치 연약점토 지반의 원심모델링)

  • Yoo, Nam-Jae;Hong, Young-Kil;Jeong, Gil-Soo;Cho, Han-Ki
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.111-120
    • /
    • 2007
  • This paper is results of experimental research on the effect of application of similarity related to permeability of soil on the consolidation behavior as centrifuge modeling of consolidation is performed with the centrifuge model facility. In this research, the permeability of soil was controlled by changing the viscosity of porewater as the mixed water with glycerin was used during the centrifuge model experiments. The effect of drainage path on consolidation was investigated by installing the vertical drains. A serise of centrifuge model tests with conditions of single vertical and radial horizontal drainage were carried out. Kaolinite and Jumunjin standard sand were used as soft clay and surcharges respectively during tests. For testing condition of single vertical drainage considering similarity of permeability, it was found that consolidation with mixed porewater with glycerin was delayed in comparisons sons with test results with water only. For conditions of horizontal drainage with vertical drains, a low permeability by changing the viscosity of pore water resulted in delayed degree of consolidation at an initial stage of consolidation. But, it predicted not much differences in settlement as long as the consolidation time was sufficiently long enough to finish consolidation. Consequently, it was found that similarity in permeability should be considered to be critical for the case of centrifuge model experiments related to consolidation with long drainage path.

  • PDF

A Study on Similarity Rule of Loading Period and Thickness with One-dimensional Consolidation Process for Clay (점토의 1차원 압밀과정에 있어서 재하시간과 층두께에 대한 상사법칙에 관한 연구)

  • Kim, Jae Young;Ohshima, Akihiko
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.369-376
    • /
    • 2006
  • Similarity rule in order to predict the field settlement and consolidation time from oedometer test is not clear because of the thickness, loading time, rate of loading increase, dependence on strain inherent of clay. To investigate the one-dimensional consolidation tests with permeability tests varied loading period and specimen thickness were carried out the application of similarity rule. Main conclusions are 1) f(=1+e)-logk line is a unique property of the soil, 2) $c_{\nu}$, k need no correction, 3)similarity rule is depends on the positions of f-logp line and primary consolidation line.