• Title/Summary/Keyword: Consolidation settlement of clay

Search Result 212, Processing Time 0.024 seconds

Evaluation of Consolidation Settlement by Gaussian Quadrature (가우스 적분법을 이용한 압밀침하량 산정)

  • Yune, Chan-Young;Jung, Young-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.188-194
    • /
    • 2009
  • Consolidation settlement, a crucial parameter in geotechnical design of soft ground, has not been computed in a unique way due to different computation methods in practice. To improve computational error in calculating consolidation settlement, a number of researches has been attempted. Conventional 1-dimensional consolidation theory assumes the center of the clay layer as the representative point to obtain effective stress in calculation, which could resort to erroneous results. To calculate exact solutions considering initial distribution of effective stress, diving a stratum into multi-layers could resort to wasting time and effort. In the study, a novel methodology for calculating consolidation settlement via Guassian quadrature is developed. The method generally is capable of computing settlements in any case of the stress conditions encountered in fields.

  • PDF

Prediction and Assessment on Consolidation Settlement for Soft Ground by Hydraulic Fill (준설매립 연약지반에 대한 압밀침하 예측 및 평가)

  • Jeon, Je-Sung;Koo, Ja-Kap;Oh, Jeong-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2008
  • This paper describes the performance of ground improvement project using prefabricated vertical drains of condition, in which approximately 10m dredged fill overlies original soft foundation layer in the coastal area composed of soft marine clay with high water content and high compressibility. From field monitoring results, excessive ground settlement compared with predicted settlement in design stage developed during the following one year. In order to predict the final consolidation behavior, recalculation of consolidation settlements and back analysis using observed settlements were conducted. Field monitoring results of surface settlements were evaluated, and then corrected because large shear deformation occurred by construction events in the early stages of consolidation. To predict the consolidation behavior, material functions and in-situ conditions from laboratory consolidation test were re-analyzed. Using these results, height of additional embankment is estimated to satisfy residual settlement limit and maintain an adequate ground elevation. The recalculated time-settlement curve has been compared with field monitoring results after additional surcharge was applied. It might be used for verification of recalculated results.

A Consolidation Settlement Prediction Considering Primary and Secondary Consolidation (1차와 2차 침하를 고려한 압밀침하량 예측)

  • Lee, Dal-Won;Jeong, Seong-Gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • In this study, it was proposed that an equation for predicting consolidation settlement on soft clay ground, which separate total settlement into primary and secondary consolidation settlement equation. The consolidation settlements by the proposed equation and by the measured settlements from laboratory model test were compared and verified for its application. It was appeared that the proposed equation from the laboratory model test approach to be more realistic comparing to !the result of Terzaghi's equation. From the above application, it was concluded that the final settlement prediction by. the Hyperbolic, Asaoka methods is needed to the initial settlement but the proposed equation could be much applicable in the lacking condition of measured data of the initial period.

Estimating a Consolidation Behavior of Clay Using Artificial Neural Network (인공신경망을 이용한 압밀거동 예측)

  • Park, Hyung-Gyu;Kang, Myung-Chan;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.673-680
    • /
    • 2000
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a consolidation behavior of clay from soil parameter, site investigation data and the first settlement curve is proposed. The training and testing of the network were based on a database of 63 settlement curve from two different sites. Five different network models were used to study the ability of the neural network to predict the desired output to increasing degree of accuracy. The study showed that the neural network model predicted a consolidation behavior of clay reasonably well.

  • PDF

Studies on the Long-term Consolidation Characteristics of Peats (이탄의 장기압밀특성에 관한 연구)

  • 김재영;주재우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.1
    • /
    • pp.106-116
    • /
    • 1989
  • This study aims at scrutinizing the long4errn consolidation characteristics of peats sampled at three different regions of Chonbuk province. The standard consolidation test and the single load consolidation test were performed about these samples and especially in case of the latter the loading period was 350 days. The main condusions analyzed are as follows. 1. Void ratio showed much greater values than that of the general clay and was decresed greatly according to the increase of the load. 2. In case of the relationship between the sefflement and the long-term settlement time the rate of settlement increment became great according to the increase of the load step and the long4erm settlement became linely proportional to the logarithm of time alter 10 minutes. 3. The linear correlation was showed between the long4erm settlement time and the void ratio and therefore equations by regression analysis were derived in order to estimate the long-term settlement The slope of straight lines increased according th the increase of the load step and secondary consolidation coefficients ranged from 0.04-0.27. 4. The secondary consolidation coeffcient became linealy proportional to the compression index and the ratio of Ca to CC was 0.072. 5. The period required in ending the primary consolidation was about 10 minutes and alter that the secondary consolidation coefficient appeared to have constant value. Therefore the secondary consolidation coefficient was judged to be used as a significant factor in estimating the long4erm settlement. 6. In case of the single load consolidation test the secondary consolidation coefficient showed the tendancy increasing according to the increase of the consolidation pressure.

  • PDF

Long-term consolidation characteristics of dredged and reclaimed ground (준설매립지반의 장기압밀 특성)

  • Lee, Choong-Ho;Kim, Ju-Hyun;Baek, Won-Jin;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.486-493
    • /
    • 2008
  • Consolidation settlements on marine dredged clays are often greatly and potentially damaging to structures. Currently, large-scale projects are in planning or progressing in Korea. These projects has been performed on thick and soft clay layers. So, the evaluation of long-term consolidation settlement is very important in design and construction. Therefore, In this study, a long-term consolidation characteristics of marine dredged clays are investigated. First, the relationship of $C_{\alpha}/C_c$ on marine dredged clays near Gwang-yang Port was evaluated. Second, long-term consolidation characteristics of the pseudo-preconsolidated ground were evaluated.

  • PDF

A Study on Consolidation Characteristics in Marine Clay by Sand Drain (Sand Drain에 의한 점성토의 압밀 특성)

  • Chon, Yong-Baek;Gwak, Soo-Jeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.83-89
    • /
    • 2004
  • The analysis about consolidation characteristic in soft clay has been depending one-dimension consolidation analysis. but, drain and undrain zone are explicated as homogeneous by consolidation behavior following consoli- dated settlementsoft in soft clay. 1) Established sand drain in soft clay in many types, and measured water content, unconfined compression strength, vertical stress, horizontal stress, vertical settlement, pore water pressure. 2) Arranged the result from the test and numerically explicated effective stress, total stress, and effective stress path at the drain and undrain zone. 3) We also analyzed and comparied elastic and elastic-plastic in soft clay using measured data. The result analyzed does not approach to a special theory, but, it is well in accord with the result of other investigator's study in the same condition.

  • PDF

Sedimentation & Consolidation Behaviour of Dredged Clay Fill (준설매립 점토지반의 침강 . 압밀거동)

  • 이승원;지성현;유석준;이영남
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.149-156
    • /
    • 2000
  • Sedimentation and self-weight consolidation tests in cylinder and large model tank and field measurement such as settlement and pore water pressure at each layer by wireless automatic instrumentation system were carried out to investigate the behaviour of dredged marine clay fill. The consolidation behaviour for each reclaimed layer was analyzed from these measured data and numerical analysis result using finite strain consolidation theory. It was fond from this study that the consolidation behaviour of dredged clay fill is heavily dependent on the filling process.

  • PDF

Excessive Settlement Back-Analysis of Railway Embankment on Soft Soils during Service

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2019
  • This paper presents case history of railway embankment excess settlement on soft clay during service in southern region of Korea. A lot of field observations show that the measured settlements are a lot larger than settlements actually calculated in this area. Back analysis is carried out to verify the soil parameters which are intended to investigate in the subsurface exploration phase and later in a laboratory test program. Recommendations and causes for the engineering practice are suggested to review the determination of excess settlements and, consequently, to improve the settlement prediction. This enormous discrepancy is due to the passing over secondary consolidation, and the design filling did not meet to real construction filling. Immediate settlement could be subsidiary factor of excess settlement.

A Study on the Method of Design of Drainage in Soft Clay (연약지반의 배수설계 기법에 관한 연구)

  • 지인택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.128-137
    • /
    • 1997
  • In this study, examined influence of consolidation effect that had affected by location of pump inlet that was set collection well for drainage of pore water discharged by embankment on soft ground through the field test. The results of this study are summarized as follows; 1 Initial consolidation curve value were larger than theoritic value, the cause of these phenomena were thought influence of secondary consolidation and three dimensional strain of soft clay. 2. The settlement value of Hosino method was larger than that of Hyperbolic method, but settlement value of Hyperbolic method was accurate more than that of Hosino method in the prediction of settlement. 3. When pump inlet in collection well came down from GL+O.3m to GL-1.5m, settlement value increased about 10cm and when the ground water level was made insitu after pumping had completed , settlement was expanded about 7~8cm. So it is found that location change of pump inlet bad an influence on settlement remarkably. 4. If location of pump inlet in collection well for large scale estate or wide road site is lowered than original ground level, the settlement will be accelerated effectively, and at this stage automatic pump must be used in pumping.

  • PDF