• Title/Summary/Keyword: Conserved gene

Search Result 751, Processing Time 0.027 seconds

Isolation and Characterization of Two Amino Acid-activating Domains of Peptide Synthetase Gene from Bacillus subtilis 713

  • Lee, Youl-Soon;You, Sang-Bae;Lee, Ji-Wan;Kim, Tae-Young;Kim, Sung-Uk;Bok, Song-Hae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.399-405
    • /
    • 1998
  • From the sequence alignment of various non-ribosomal peptide synthetases, several motifs of highly conserved sequences have been identified within each domain of peptide synthetases. We designed PCR primers based on the highly conserved nucleotide sequences to amplify and isolate a ∼7.2-kb DNA fragment of the Bacillus subtilis 713 which was isolated and reported to produce an antifungal peptide compound. Nucleotide sequence analysis of 4.8 kb of the predicted amino acids revealed significant homology to various peptide synthetases over the whole sequence and also revealed two amino acid-activating domains with highly conserved Core 1 to Core 6 and spacer motif. This suggests that the isolated DNA fragment is part of a peptide synthetase gene for antifungal peptide.

  • PDF

Molecular cloning and sequence Analysis of the Gene for SecY from Streptomyces coelicolor (Muller) (Streptomyces coelicolor에서 secY 유전자의 클로닝과 염기서열 결정)

  • Kim, Sang-Suk;Hyun, Chang-Gu;Kim, Young-Min;Lee, Joo-Hun;Chung, In-Kwon;Kim, Dae-Myung;Suh, Joo-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.678-686
    • /
    • 1995
  • SecY is a central component of the protein export machinery that mediate the translocation of secretory proteins across the plasma membrane of Escherichia coli. In order to study the mechanism of protein secretion in Streptomyces, we have done cloning and sequencing of the Streptomyces coelicolor secY gene by using polymerase chain reaction method. The nucleotide sequence of the gene for SecY from S. coelicolor showed over 58% identity to that of M. luteus. The deduced amino acid sequences were highly homologous to those of other known SecY polypeptides, all having the potential to form 10 transmembrane segments, and especially second, fifth, and tenth segments were particularly conserved, sharing greater than 75% identity with W. lute s SecY. We propose that the conserved membrane-spanning segments actively participate in protein export. In B. subtilis and E. coli, the secY gene is a part of the spc operon, is preceded by the gene coding for ribosomal protein L15, and is likety coupled transcriptionally and translationally to the upstream L15 gene. In the other hand, secY gene of S. coelicolor and M. luteus have its own promoter region, are coupled translationally with adk gene and pr sented in adk operon.

  • PDF

Isolation of an Rx homolog from C. annuum and the evolution of Rx genes in the Solanaceae family

  • Shi, Jinxia;Yeom, Seon-In;Kang, Won-Hee;Park, Min-Kyu;Choi, Do-Il;Kwon, Jin-Kyung;Han, Jung-Heon;Lee, Heung-Ryul;Kim, Byung-Dong;Kang, Byoung-Cheorl
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.331-344
    • /
    • 2011
  • The well-conserved NBS domain of resistance (R) genes cloned from many plants allows the use of a PCR-based approach to isolate resistance gene analogs (RGAs). In this study, we isolated an RGA (CapRGC) from Capsicum annuum "CM334" using a PCR-based approach. This sequence encodes a protein with very high similarity to Rx genes, the Potato Virus X (PVX) R genes from potato. An evolutionary analysis of the CapRGC gene and its homologs retrieved by an extensive search of a Solanaceae database provided evidence that Rx-like genes (eight ESTs or genes that show very high similarity to Rx) appear to have diverged from R1 [an NBS-LRR R gene against late blight (Phytophthora infestans) from potato]-like genes. Structural comparison of the NBS domains of all the homologs in Solanaceae revealed that one novel motif, 14, is specific to the Rx-like genes, and also indicated that several other novel motifs are characteristic of the R1-like genes. Our results suggest that Rx-like genes are ancient but conserved. Furthermore, the novel conserved motifs can provide a basis for biochemical structural. function analysis and be used for degenerate primer design for the isolation of Rx-like sequences in other plant species. Comparative mapping study revealed that the position of CapRGC is syntenic to the locations of Rx and its homolog genes in the potato and tomato, but cosegregation analysis showed that CapRGC may not be the R gene against PVX in pepper. Our results confirm previous observations that the specificity of R genes is not conserved, while the structure and function of R genes are conserved. It appears that CapRGC may function as a resistance gene to another pathogen, such as the nematode to which the structure of CapRGC is most similar.

CysQ of $Cryptosporidium$ $parvum$, a Protozoa, May Have Been Acquired from Bacteria by Horizontal Gene Transfer

  • Lee, Ji-Young;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Horizontal gene transfer (HGT) is the movement of genetic material between kingdoms and is considered to play a positive role in adaptation. $Cryptosporidium$ $parvum$ is a parasitic protozoan that causes an infectious disease. Its genome sequencing reported 14 bacteria-like proteins in the nuclear genome. Among them, cgd2_1810, which has been annotated as CysQ, a sulfite synthesis pathway protein, is listed as one of the candidates of genes horizontally transferred from bacterial origin. In this report, we examined this issue using phylogenetic analysis. Our BLAST search showed that $C.$ $parvum$ CysQ protein had the highest similarity with that of proteobacteria. Analysis with NCBI's Conserved Domain Tree showed phylogenetic incongruence, in that $C.$ $parvum$ CysQ protein was located within a branch of proteobacteria in the cd01638 domain, a bacterial member of the inositol monophosphatase family. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the sulfate assimilation pathway, where CysQ plays an important role, is well conserved in most eukaryotes as well as prokaryotes. However, the Apicomplexa, including $C.$ $parvum$, largely lack orthologous genes of the pathway, suggesting its loss in those protozoan lineages. Therefore, we conclude that $C.$ $parvum$ regained cysQ from proteobacteria by HGT, although its functional role is elusive.

New Approach to Predict microRNA Gene by using data Compression technique

  • Kim, Dae-Won;Yang, Joshua SungWoo;Kim, Pan-Jun;Chu, In-Sun;Jeong, Ha-Woong;Park, Hong-Seog
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.361-365
    • /
    • 2005
  • Over the past few years, the complex and subtle roles of microRNA (miRNA) in gene regulation have been increasingly appreciated. Computational approaches have played one of important roles in identifying miRNAs from plant and animals, as well as in predicting their putative gene target. We present a new approach of comprehensive analysis of the evolutionarily conserved element scores and applied data compression technique to detect putative miRNA genes. We used the evolutionarily conserved elements [19] (see more detail on method and material) to calculate for base-by-base along the candidate pre-miRNA gene region by detecting common conserved pattern from target sequence. We applied the data compression technique [20] to detect unknown miRNA genes. This zipping method devises, without loss of generality with respect to the nature of the character strings, a method to measure the similarity between the strings under consideration [20]. Our experience to using our new computational method for detecting miRNA gene identification (or miRNA gene prediction) has been stratified and we were able to find 28 putative miRNA genes.

  • PDF

Detection of Conserved Genes in Proteobacteria by using a COG Algorithm (COG 알고리즘을 통한 Proteobacteria의 보존적 유전자 파악)

  • 이동근;강호영;이재화;김철민
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.560-565
    • /
    • 2002
  • A COG(clusters of orthologous groups of proteins) algorithm was used to detect conserved genes within Proteobacteria and to figure out their relationships. Restricting comparison to the sequences of 42 procaryotes, 33 eubacteria and 16 Proteobacteria, the number of conserved genes was increased. All analyzed procaryotes shared 75 COGs. COG0195, COG0358 and COG0528 were only represented by the 42 procaryotes. Sixtyfour COGs were added as conserved genes in 33 eubacteria. Each Proteobacteria group has a unique repertoire of COGs. Metabolic COGs were more diverse in the beta Proteobacteria group than in the other groups. These results could be used to determine the origins and the evolutionary relationships of Proteobacteria. The possibilities of detecting new biological molecules is high in phylogenetically related organisms, hence the identification of useful proteins by using this algorithm is possible.

Isolation and Characterization of the C-type Lysozyme Gene from the Common Cutworm Spodoptera litura

  • Kim, Jong-Wan;Yoe, Sung-Moon
    • Animal cells and systems
    • /
    • v.13 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • We have isolated and characterized a new insect chicken type (c-type) lysozyme gene from the common cutworm, Spodoptera litura. The full-length cDNA of Spodoptera lysozyme is cloned by rapid amplification of cDNA ends PCR (RACE-PCR). The isolated cDNA consists of 1039 bp including the coding region for a 142-amino acid residue polypeptide, which included a signal peptide of 21-amino acid residue and a mature protein of 121-amino acid residue. The predicted molecular weight of mature lysozyme and its theoretical isoelectric point from amino acid composition is 13964.8 Da and 9.05, respectively. The deduced amino acid sequence of Spodoptera lysozyme gene shows the highest similarity (96.7%) to Spodoptera exigua lysozyme among other lepidopteran species. Amino acid sequence comparison with other the c-type lysozymes, Spodoptera lysozyme has the completely conserved $Glu^{32}$ and $Asp^{50}$ of the active site and eight Cys residues are completely conserved in the same position as that of other lepidopteran lysozymes.

Molecular Cloning and Characterization of Mn-Superoxide Dismutase Gene from Candida sp.

  • Hong, Yun-Mi;Nam, Yong-Suk;Choi, Soon-Yong
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 1997
  • The manganese-containing superoxide dismutase (MnSOD) is a major component of the cellular defence mechanisms against the toxic effects of the superoxide radical. Within the framework of studies on oxidative stress=responsible enzymes in the Candida sp., the gene encoding the MnSOD was isolated and examined in this study. A specific primer was designed based on conserved regions of MnSOD sequences from other organisms, and was used to isolate the gene by PCR on reverse-transcribed Candida poly($A^{+}$) RNA. The PCR product was used to screen a Candida genomic lambda library and the nucleotide wequence of positive clone was determined. The deduced primary sequence encodes a 25kDa protein which has the conserved residues for enzyme activity and metal binding. The 28 N-terminal amino acids encoded by the Candida cDNA comprise a putatice mitochondrial transit peptide. Potential regulatory elements were identified in the 5' flanking sequences. Northern blot analysis showed that the transcription of the MnSOD gene is induced 5-to 10-fold in response to mercury, cadmium ions and hydrogen peroxide.

  • PDF

Transcriptional Analysis of the DNA Polymerase Gene of Bombyx mori Parvo-like Virus (China Isolate)

  • Wang, Yong-Jie;Chen, Ke-Ping;Yao, Qin;Han, Xu
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.139-145
    • /
    • 2007
  • The Bombyx mori parvo-like virus (China isolate) DNA polymerase (BmDNV-3 dnapol) gene has been tentatively identified based on the presence of conserved motifs. In the present study, we perform a transcriptional analysis of the BmDNV-3 dnapol gene using the total RNA isolated from BmDNV-3 infected silkworm at different times. Northern blot analysis with a BmDNV-3 dnapol-specific riboprobe showed a major transcript of 3.3 kb. 5'-RACE revealed that the major transcription start point was located 20 nucleotides downstream of the TATA box. In a temporal expression analysis using differential RT-PCR, BmDNV-3 dnapol transcript was detected at low levels at 6 h.p.i., increased from 6 to 36 h.p.i., and remained fairly constant thereafter. Analysis of the predicted DNA polymerase sequence using neighborjoining and protein parsimony algorithms indicated that the predicted 1115-residue polypeptide contained five motifs associated with DNA polymerases synthetic activities and three additional motifs associated with polymerases possessing 3' to 5' exonuclease activity. The molecular phylogenetic analysis of this gene supported the placement of Bombyx mori parvo-like virus in a separate virus family.

Isolation and Analysis of the argG Gene Encoding Argininosuccinate Synthetase from Corynebacterium glutamicum

  • Ko, Soon-Young;Kim, Sei-Hyun;Lee, Heung-Shick;Lee, Myeong-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.949-954
    • /
    • 2003
  • The argG gene of Corynebacterium glutamicum encoding argininosuccinate synthetase (EC6345) was cloned and sequenced. The gene was cloned by heterologous complementation of an Escherichia coli arginine auxotrophic mutant (argG/sup -/). The cloned DNA fragment also complements E. coli argD, argF, and argH mutants, suggesting a clustered organization of the genes in the chromosome. The coding region of the argG gene is 1,206 nucleotides long with a deduced molecular weight of about 44 kDa, comparable with the predicted size of the expressed protein on the SDS-PAGE. Computer analysis revealed that the amino acid sequence of the argG gene product had a high similarity to that of Mycobacterium tuberculosis and Streptomyces clavuligerus. Two conserved sequence motifs within the ArgG appear to be ATP-binding sites which correspond to 2 of the 3 conserved regions found in sequences of all known argininosuccinate synthetases.