• Title/Summary/Keyword: Connection types of Implant-abutment

Search Result 27, Processing Time 0.021 seconds

Effect of various abutment systems on the removal torque and the abutment settling in the conical connection implant systems (원추형 연결 임플란트에서 지대주 종류에 따른 나사풀림과 침하현상에 관한 연구)

  • Lee, Jin-Seon;Lee, Joon-Seok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.2
    • /
    • pp.92-98
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the effects of different abutment materials on abutment screw loosening and settling-down effect in conical connection type implant system. Materials and methods: Three types of abutment, cementation, gold UCLA, and metal UCLA abutment were used. Two UCLA groups were fabricated in a similar pattern to cementation abutment. Type III gold alloy and Nickel-Chromium alloy was used for casting gold UCLA abutment and metal UCLA abutment, respectively. Fixture and abutment were tightened to 30 Ncm by using digital torque controller and re-tightening was conducted with same force after 10 minutes. Digital torque gauge was used to measure loosening torque and fixture/abutment length was measured by digital micrometer. Dynamic loads between 25 N and 250 N were applied with $0^{\circ}$ angle to the abutment axis. After loading, fixture/abutment length was re-measured and amount of settlement was calculated. Loosening torque value was also measured for comparison Results: All three groups showed significant differences of length when comparing before and after loading, but there was no significant difference of settling amount in all groups. Loosening torque values were significantly decreased when comparing before and after loading in all groups($P$<.05). However, there was no significant difference in loss of loosening torque values when compared to groups. Conclusion: In internal conical connection type implants, dynamic load affected on settlement and loosening torque of implant, but there was no differences between abutments materials. Likewise gold UCLA abutment, metal UCLA abutment might be able to withstand functional load.

Long-term Retrospective Clinical Study Comparing Submerged Type with External Hex Connection and Non-submerged Type with Internal Morse Taper Connection Implants

  • Kwoen, Min-Jeong;Kim, Sang-Yun;Kim, Young-Kyun
    • Journal of Korean Dental Science
    • /
    • v.12 no.1
    • /
    • pp.29-37
    • /
    • 2019
  • Purpose: This study was aimed to compare the survival and success rates, and long-term crestal bone loss according to the use of 2 connection types of dental implants (submerged-USII and non-submerged-SSII; Osstem $Implant^{(R)}$) by analyzing the change in alveolar bone height after 1 year under load and during final follow-up period. Materials and Methods: Between December 2004 and August 2008, patients with two types of Osstem implants (USII and SSII) were retrieved retrospectively. A total of 92 patients with 284 implants (USII=60, SSII=224) was finally selected. Their mean follow-up period was 7.5 years. The mesial and distal alveolar crestal bone changes were measured using radiographic images and the average was calculated at 1 year after loading and during final follow-up period. Result: Among the 284 implants, 4 USII and 7 SSII implants were removed, indicating 93.3% and 96.9% survival rates. Of the survived implants, mean crestal bone loss 1 year after loading was 0.39 mm for USII and 0.19 mm for SSII (P=0.018). During the final follow-up, mean crestal bone loss was 0.63 mm and 0.35 mm for USII and SSII, respectively, without statistical significance (P=0.092). According to the criteria for the success and failure of the implant by Albreksson and colleagues, final success rate was estimated as 86.7% for USII and 91.5% for SSII, respectively. Conclusion At 1 year after loading, the average crestal bone loss was significantly different between USII and SSII; however, both types met the criteria for implant success. During the final follow-up, both groups showed insignificant bone resorption patterns and did not show any pathological clinical symptoms. Therefore, both implants exhibited high long-term stability.

Physical and mechanical changes on titanium base of three different types of hybrid abutment after cyclic loading

  • Rimantas Oziunas;Jurgina Sakalauskiene;Laurynas Staisiunas;Gediminas Zekonis;Juozas Zilinskas;Gintaras Januzis
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • PURPOSE. This study investigated the physical and mechanical changes in the titanium base of three different hybrid abutment materials after cyclic loading by estimating the post-load reverse torque value (RTV), compressive side fulcrum wear pattern of titanium base, and surface roughness. MATERIALS AND METHODS. A total of 24 dental implants were divided into three groups (n = 8 each): Group Z, LD, and P used zirconia, lithium disilicate, and polyetheretherketone, respectively, for hybrid abutment fabrication. RTV was evaluated after cyclic loading with 50 N for 1.2 × 106 chewing cycles. The compressive sides of the titanium bases were analyzed using a scanning electron microscope, and the roughness of the affected areas was measured using an optical profilometer after loading. Datasets were analyzed using Kruskal-Wallis test followed by Mann-Whitney tests with the Bonferroni correction (α = .05). RESULTS. Twenty-three samples passed the test; one LD sample fractured after 770,474 cycles. Post-load RTV varied significantly depending on the hybridabutment material (P = .020). Group P had a significantly higher median of post-load RTVs than group Z (16.5 and 14.3 Ncm, respectively). Groups LD and P showed minor signs of wear, and group Z showed a more pronounced wear pattern. While evaluating compressive side affected area roughness of titanium bases, lower medians were shown in group LD (Ra 0.16 and Rq 0.22 ㎛) and group P (Ra 0.16 and Rq 0.23 ㎛) than in group Z (Ra 0.26 and Rq 0.34 ㎛); significant differences were found only among the unaffected surface and group Z. CONCLUSION. The hybrid abutment material influences the post-load RTV. Group Z had a more pronounced wear pattern on the compressive side of titanium base; however, the surface roughness was not statistically different among the hybridabutment groups.

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

IN VITRO EVALUATION OF PERIOTEST VALUES UNDER VARIOUS CONDITIONS OF PROSTHESES (보철물 조건에 따른 Periotest수치의 실험적 평가)

  • Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.793-800
    • /
    • 1997
  • Periotest(Siemens, Germany) has been used to test mobility of the implants clinically, however the effects of target materials and connection methods on the PTVs(Periotest Values) have not been evaluated. Periotest has been regarded as a reliable and objective tool to test implant and natural teeth mobility clinically, however this instrument showed different PTVs under various test conditions. This in vitro study was designed to compare PTVs of different veneering materials and prosthodontic designs (single and bridge restorations). To compare the effects of veneering materials on PTVs, 1 mm thickness of five different testing materials (porcelain, type III gold alloy, pure titanium, composite resin, acrylic resin) were placed on the resin block. Three full length of 13 mm Mark II implant fixtures were embedded into autopolymerizing resin block to fabricate single and bridge restorations. To evaluate effects of the connection method in single restorations, PTVs of screw retained(UCLA type) and cementation type(Cera-One system) were compared. Finally, to test reliability of PTVs of the final restorations, screw retained three unit short span PFM bridges were fabricated on the standard and Estheti-Cone abutments. All testing components were tightened with torque controller and PTVs of all specimens were measured 15 times for statistical analysis with SAS program. Following conclusions were made within the limit of this in vitro study. 1. PTVs of type III gold alloy, grade II titanium, composite resin veneering materials showed no significant differences, however acrylic resin and porcelain showed significant differences (P<0.05). 2. Single tooth restorations showed consistent PTVs as long as proper torque force was applied. 3. PTVs of bridge type prostheses was inconsistent regardless of abutment types. 4. PTVs of the prostheses showed higher scores and standard deviations than those of abutments regardless types of connection (P<0.05).

  • PDF

Finite Element Stress Analysis of Bone Tissue According to the Implant Connection Type (2종의 임플란트 내부결합구조체에 따른 치조골상 유한요소응력 분석)

  • Byun, Ook;Jung, Da-Un;Han, In-Hae;Kim, Seong-Ryang;Lee, Chang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.259-271
    • /
    • 2013
  • The purpose of this study was to make the stress distribution produced by simulated different load under two types of internal connection implant system (stepped and tapered type) by means of 3D finite element analysis, The finite element model was designed with the parallel placement of the one fixtures ($4.0mm{\times}11.5mm$) with reverse buttress thread on the mandibular 1st molar. Two models were loaded with 200 N magnitude in the vertical direction on the central position of the crown, the 1.5 mm and 3 mm buccal offset point from the central position of the fixture. The oblique load was applied at the angle of $30^{\circ}$ on the crown surface. Von Mises stress value was recorded and compared in the fixture-bone interface in the bucco-lingual dimension. The results were as follows; 1. The loading conditions of two internal connection implant systems (stepped and tapered type) were the main factor affecting the equivalent bone strain, followed by the type of internal connections. 2. The stepped model had more mechanical stability with the reduced max. stress compared to $11^{\circ}$ tapered models under the distributed oblique loading. 3. The more the contact of implant-abutment interface to the inner wall of implant fixture, the less stress concentration was reduced.

A 10-year retrospective study on the risk factors affecting the success rate of internal connection implants after prosthetic restoration (내부연결 임플란트의 보철 수복 후 성공률에 미치는 위험요소에 관한 10년간의 후향적 연구)

  • Seoin Lee;Min-Jeong Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.2
    • /
    • pp.113-124
    • /
    • 2023
  • Purpose. The purpose of this study is to help increase the success rate by analyzing the types and characteristics of implant prosthesis and the survival rate. Materials and methods. Among implants placed between 2011 and 2020 at Sanbon Dental Hospital, College of Dentistry, Wonkwang University, a case restored by a prosthetic surgeon was investigated for the characteristics and correlation of failure. The causes of failure were classified as failure of osseointegration, peri-implantitis, fixture fracture, abutment fracture, screw fracture, screw loosening, prosthesis fracture, and loss of prosthesis retention. Prosthetic method, cantilever presence, placement location, etc. were analyzed for their correlation with implant failure. Results analysis was derived through Chi-square test and Kaplan-Meier survival analysis using SPSS ver 25.0 (IBM, Chicago, IL, USA). Results. A total of 2587 implants were placed, of which 1141 implants were restored with Single Crown and 1446 implants with Fixed Partial Denture, and the cumulative survival rate was 88.1%. The success rate of SC was 86.2% (984) and the success rate of FPD was 89.6% (1295), showing statistically significant differences, among which factors that had significant differences were abutment fracture, screw fracture, and screw loosening (P < .05). Conclusion. As a result of the 10-year follow-up, more failures occurred due to biomechanical factors than biological factors. Further studies on the success of implants will be needed in the future.