• Title/Summary/Keyword: Connection Force

Search Result 450, Processing Time 0.028 seconds

Experiments on Slip Coefficients of High-Strength Bolt Connection with Weathering Steel (II) (내후성강재 고장력볼트 이음부 미끄럼계수 평가 실험 (II))

  • Park, Yong Myung;Seong, Taek Ryong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.177-185
    • /
    • 2000
  • An experimental research to evaluate the slip coefficients of high-strength friction-type bolt connection of weathering steel plate has been performed in this paper. The test specimens with mill scale or shot blast had been exposed in open air during 3 and 6 months and cleaning of rust surface by hand brushing, power tool brushing and no cleaning was considered. The relaxation of bolt clamping force had also been measured during 600 hours. It was found that slip coefficients increased to the value over 0.6 with exposure except mill scale surface by power tool brushing. The relaxation of bolt tension force in exposed specimens also increased and maximum value reached to about 10%.

  • PDF

Effect of bolted splice within the plastic hinge zone on beam-to-column connection behavior

  • Vatansever, Cuneyt;Kutsal, Kutay
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.767-778
    • /
    • 2018
  • The purpose of this study is to investigate how a fully restrained bolted beam splice affects the connection behavior as a column-tree connection in steel special moment frames under cyclic loading when located within the plastic hinge zone. The impacts of this attachment in protected zone are observed by using nonlinear finite element analyses. This type of splice connection is designed as slip-critical connection and thereby, the possible effects of slippage of the bolts due to a possible loss of pretension in the bolts are also investigated. The 3D models with solid elements that have been developed includes three types of connections which are the connection having fully restrained beam splice located in the plastic hinge location, the connection having fully restrained beam splice located out of the plastic hinge and the connection without beam splice. All connection models satisfied the requirement for the special moment frame connections providing sufficient flexural resistance, determined at column face stated in AISC 341-16. In the connection model having fully restrained beam splice located in the plastic hinge, due to the pretension loss in the bolts, the friction force on the contact surfaces is exceeded, resulting in a relative slip. The reduction in the energy dissipation capacity of the connection is observed to be insignificant. The possibility of the crack occurrence around the bolt holes closest to the column face is found to be higher for the splice connection within the protected zone.

A Signal Characteristic Based Cluster Scheme for Aeronautical Ad Hoc Networks

  • Tian, Yu;Ma, Linhua;Ru, Le;Tang, Hong;Song, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3439-3457
    • /
    • 2014
  • Clustering is an effective method for improving the performance of large scale mobile ad hoc networks. However, when the moving speed is very fast, the topology changes quickly, which leads to frequent cluster topology updates. The drastically increasing control overheads severely threaten the throughput of the network. SCBCS (Signal Characteristic Based Cluster Scheme) is proposed as a method to potentially reduce the control overheads caused by cluster formation and maintenance in aeronautical ad hoc networks. Each node periodically broadcasts Hello packets. The Hello packets can be replaced by data packets, which preserve bandwidth. The characteristics of the received packets, such as the Doppler shift and the power of two successive Hello packets, help to calculate the relative speed and direction of motion. Then, the link connection lifetime is estimated by the relative speed and direction of motion. In the clustering formation procedure, the node with the longest estimated link connection time to its one-hop neighbors is chosen as the cluster head. In the cluster maintenance procedure, re-affiliation and re-clustering schemes are designed to keep the clusters more stable. The re-clustering phenomenon is reduced by limiting the ripple effect. Simulations have shown that SCBCS prolongs the link connection lifetime and the cluster lifetime, which can reduce the topology update overheads in highly dynamic aeronautical ad hoc networks.

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

Analysis on the Factor of Revision of Pipe Laying Down Material and Connection Work Material (표준품셈 관부설 및 접합공사 품 개정 요인 분석)

  • Oh, Jae-Hoon;An, Bang-Yul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.302-303
    • /
    • 2018
  • This study analyzed the major revision factors and revision contents for 'Construction-Standard-Production-Rate for Construction Works in 2018. Part 16. Pipe Laying Down and Connection" which was revised by the construction expense estimation standard's middle and long-term plans. The main reasons for the revision was analyzed to be unclear construction scope, limitations in applicable pipe material based on the facility type, labor force mainly composed of ordinary workers, limitations of labor force, and incomplete appropriation standard for the tool rent fee and equipment expenses. Through revision of factors, common items were newly established, organization was revised, the labor force was mainly composed of the technicians, and basis for appropriation of equipment expenses was arranged. In addition, through periodic revision, the appropriation standard for bend and special pipes was set. Consequently, more practical construction cost estimate standard is arranged through revision.

  • PDF

The Flexural and Shear Behaviors of Steel-PSC Mixed Structural System with Front-Rear Plate Connection (전·후면판 공용방식 접합부를 갖는 강-PSC 혼합구조의 휨 및 전단거동)

  • Lho, Byeong-Cheol;Cho, Sung-Yong;Park, Hyun-Chul;Kim, Mun-Kyum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.201-212
    • /
    • 2007
  • This study presents experimental results of Steel-PSC mixed structural system having front-rear plate connection between Steel and Prestressed Concrete. Two kinds of Steel-PSC mixed structural system of 5.4m length were tested to evaluate flexural behaviors under four point loading, and 4 kinds of specimens with and without prestressing force at R & L type connection were tested to observe the shear behavior. Based on the test results of load-deflection curves and failure modes of specimens, it is found that the proposed L shape connection with front-rear plate connection between Steel and Prestressed Concrete has higher strength and stiffness. From the study, Steel-PSC mixed structural system with L shaped connection has a better structural performance in connection part.

Elastic stiffness of stud connection in composite structures

  • Qin, Xi;Yang, Guotao
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.419-433
    • /
    • 2021
  • In composite structures, shear connectors are crucial components to resist the relative slip between the steel and concrete, and thereby to achieve the composite actions. In the service stage, composite structures are usually in elastic state, so the elastic stiffness of the shear connection is a quite important parameter in the structural analysis of composite structures. Nevertheless, the existing studies mainly focus on the load-slip relationship rather than the tangent stiffness at the initial elastic stage. Furthermore, when composite beams subjected to torque or local load, shear connections are affected by both tensile force and shear force. However, the stiffness of shear connections under combined effects appears not to have been discussed hitherto. This paper investigates the initial elastic stiffness of stud connections under combined effects of biaxial forces. The initial expression and the relevant parameters are obtained by establishing a simplified analytical model of the stud connection. Afterwards, parametric finite element analysis is performed to investigate the effects of the relevant factors, including the stud length, stud diameter, elastic modulus of concrete, elastic modulus of steel and volume ratio of reinforcement. The feasibility of the proposed modelling has been proved by comparing with sufficient experimental tests. Based on the analytical analysis and the extensive numerical simulations, design equations for predicting the initial elastic stiffness of stud connections are proposed. The comparison between the equations and the data of finite element models demonstrates that the equations are accurate enough to serve for engineering communities.

Identification of Connection Stiffnesses of Bolted Structures Using a Substructural Sensitvitity Analysis (부분구조 기반 민감도 해석을 이용한 볼트겹합 구조물의 결합강성 추정)

  • 서세영;방극호;김찬묵;이두호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.287-294
    • /
    • 2001
  • The identification of connection stiffnesses of bolted structures is presented using FRT-based substructural sensitivity analysis. The substructural design sensitivity formula is derived and plugged into the optimization module of MATLAB to identify connection stiffnesses of an air-conditioner compressor or passenger Car. The air-conditioner composed of a compressor and a bracket, is analysed by using the FRT-based substructural(FBS) method to obtain FTRs an FE model is generated for the bracket, and the impact hammer test is performed for the compressor, Obtained FRTs are combined to calculate the reaction force at the connection point and the system response. By minimizing the difference between a target FRT and calculated one the connection element properties of the air-conditioner syste are identified It is shown that the proposed identification method is effective for a real problem.

  • PDF

An Experimental Study on Shear and Rotation Stiffness in the Connection Parts of Shores (동바리 연결부의 전단 및 회전 강성 실험)

  • Kwk, Soon-Seop;Kim, Ho-Soo;Jung, Sung-Jin;Hong, Geon-Ho;Lee, Kyoung-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.848-855
    • /
    • 2003
  • During concrete placement, the partially distributed load due to the concrete placement paths creates the lateral force in the connection parts of the shore. In order to restrain this lateral force, the nails must be used in the upper and lower connection parts of shores. But, for the convenience of the construction and dismantling of the shores, the workers hardly use the nails. In this case, the connections of shore cannot resist the shear force and rotation. And this situation may cause the collapse of form-shore system. Therefore, contact and spring models for the connection analysis of the form-shore systems are required. If we take into account this construction situation, we need to understand the effects of shear and rotation stiffness according to the several types of connection parts in shores as a case study. This study evaluates the shear and rotation stiffness of the connection parts of shores according to the variations of the lengths, numbers and positions of nails, and then presents the experimental results depending on the end conditions of shores. And, these results can be used as a spring model and critical load evaluation data for the connection analysis of form-shore system.

Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load (축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가)

  • Hwang, Won Sup;Park, Moon Su;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • In this study, we evaluate the strength of steel box beam-to-column connections subjected to axial loads in steel frame piers. The T-connection strength was reduced due to the column axial force in the two-story pier structure. To examine this phenomenon, non-linear FEM analysis was carried out and the analytical procedure was verified by comparing it with experimental results. To clarify the effect of the axial force and major design parameters in connection with strength, influence of panel zone width-thickness ratio, sectional area, and axial force was investigated using FEM analysis. Also, the theoretical strength equations were suggested by stress distribution of panel zone. The strength of the T-connection was compared with one of the one-story pier structure connections. As a result, the strength evaluation equations are proposed in consideration of the panel zone width-thickness ratio and sectional area ratio for the T-connections.