• Title/Summary/Keyword: Connection Detail

Search Result 225, Processing Time 0.03 seconds

The Research into Connecting System for Aerial Bundled Cable in Distribution Line (ABC 배전 접속 시스템에 대한 연구)

  • 이용순;최경선;주종민;이철호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.495-498
    • /
    • 2001
  • The distribution line through which electricity is supplied from substation to customer generally varies by underground line and overhead line. In contrast that the underground line is shielded, the overhead lines do not have the shield layer. To overcome this weak point of the overhead lines, the aerial bundled cable(ABC) connection systems have been developed. The basic concept of the ABC connection system is the application of the underground cable system containing complete shield layer to the overhead cable system. The ABC system is the innovative technologies which enable the prevention of electric shocks, reduction of the maintenance charge and damage of the cable. This paper give a full detail of vertical connection system applied within a country.

  • PDF

Development and Strength Evaluation of Beam-to-Column Connection Details in Weak Axis of H-shape Column (H형강 기둥의 약축에 대한 기둥-보 접합상세 개발 및 내력평가)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.169-180
    • /
    • 2004
  • One of the most influential elements is the moment resisting beam-to-column connection vis-a-vis the behavior and cost of multistory steel building frames. Majority of these connections are column flange connections attached to beam frames. This is called strong-axis connection. Another type of moment resisting connection commonly found in building frames is the web axis connection. In this type of connection, the beams are attached to the plane of the column web perpendicularly. It is called the weak-axis beam. and it tends to bend the column at its weak axis. In this study, some of the fundamental behaviors of beam-to-column connections were examined by changing the connection details as weil as comparing them with previous connection details. This study sought to develop the details in the beam-to-column connection in the weak axis for middle- and low-rise steel construction systems.

Fatigue Capacity Evaluation of Hinge Type Connection System for a Hybrid Truss Bridge (복합 트러스교 힌지형 격점 구조의 피로 성능 평가)

  • Jung, Kwang-Hoe;Yi, Jong-Won;Lee, Sang-Hyu;Kim, Jay Jang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.303-310
    • /
    • 2011
  • To replace a steel box bridge for constructions of medium span bridges in Korea, the Hybrid Truss Bridge (HTB) is being considered as an alternative bridge type. The core technology of HTB is the connection joint that links the concrete slabs and steel truss pipes. Various construction companies in Japan have developed unique connection systems and applied to the real bridge constructions after verifying their performances through the experimental evaluation. In this study, the fatigue test of a hybrid truss girder has been performed in order to verify the newly proposed hinge type connection joint`s static and fatigue capacities. Through this fatigue test results, it is founded that the structural detail to improve the fatigue capacity should be developed. The hinge connection system with circular ribs has been proposed by means of structural finite element analyses. And then the fatigue test for this connection joint has been performed and it is proved that this connection joint has enough fatigue capacity. Finally, it is expected that the hinge connection system with circular ribs developed by in this study can be easily applied to the real bridge.

The Structural Behavior of Strong Axis Connections by Type of Weak Axis Connection - In Case of Loading Gravity Load - (약축 접합부 형식에 따른 강축 접합부의 구조적 거동 - 연직하중이 작용하는 경우 -)

  • Kim, Sang Seup;Lee, Do Hyung;Ham, Jeong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.275-284
    • /
    • 2004
  • The behavior of the connection for beam-to-column weak axis connection and its details should be identified. Thus, each element is considered a panel zone, and the horizontal stiffener's presence or absence and position in bracket-type welding connection are used as variables to compare the behavior of strong axis connection and weak axis connection. In this study, the strength of connection is calculated by substituting the simple beam-strengthened vertical stiffeners for connection in the presence of horizontal stiffeners. In the absence of horizontal stiffeners, the strength of connection can be calculated using local flange bending strength considering local web yielding strength, web crippling, and web buckling strength. The results of the theoretical analysis and experiments are compared.

Development of Connection Details for a Double Split Tee Connection Without a Shear Tab (전단탭이 없는 상·하부 스플릿 티 접합부의 접합부상세 개발)

  • Yang, Jae Guen;Kim, Yong Boem
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • The double split tee connection, a type of beam-to-column moment connection, exhibits different behavioral characteristics according to changes in the thickness of the T-stub flange, the gauge distance of the high-strength bolt, and the number and diameter of high-strength bolts. In general, the double split tee connection is idealized and designed so that a T-stub fastened to the top and bottom supports a flexural moment, and a shear tab supports a shear force. However, if the double split tee connection is applied to low-and medium-rise steel structures, the size of the beam member becomes small, and thus the shear tab cannot be bolted to the web of a beam. In this regard, this study was conducted to propose connection details to ensure that the double split tee connection with a geometric shape can display sufficient shear resisting capacity. To this end, experiments were conducted using full-scale specimens for the double split tee connection.

An Experimental Study on the Girder-Abutment Connection for the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bars (PS 강봉으로 일체화된 강합성 라멘교의 거더-교대 접합부의 거동에 관한 실험적 연구)

  • Lee, Sang-Yoon;Ahn, Young-Soo;Oh, Min-Ho;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.453-463
    • /
    • 2012
  • Steel-concrete composite rigid-frame bridge is a type of integral bridge having advantages in bridge maintenance and structural efficiency from eliminating expansion joints and bridge supports, the main problems in bridge maintenance. The typical steel-concrete composite rigid-frame bridge has the girder-abutment connection where a part of its steel girder is embedded in abutment for integrity. However, the detail of typical girder-abutment connection is complex and increases the construction cost, especially when a part of steel girder is embedded. Recently, a new type of bridge was proposed to compensate for the disadvantages of complex details and cost increase. The compensation are expected to improve efficiency of construction by simplifying the construction detail of the girder-abutment connection. In this study, a static load test has been carried out to examine the behavior of the girder-abutment connection using real-scale specimens. The results of the test showed that the girder-abutment connection of proposed girder bridge has sufficient flexural capacity and rebars to control concrete crack should be placed on the top of abutment.

Seismic Performance of Wide Flange Beam-to-Concrete Filled Tube Column Joints with Stiffening Plates around the Column (사각판 스티프너로 보강한 콘크리트 충전강관 기둥과 H형강 보 접합부의 내진성능)

  • Park, Jong Won;Kang, Seoung Min;Kim, Wook Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.167-174
    • /
    • 2003
  • This paper presented the results of cyclic loading tests of 7 full-scale beams to column subassemblages with improved connection detail i.e., fillets of the stiffening plates at the column corners and ends of the stiffener-to-beam flange weld. Major findings from the test results were: (1) Fillets reduced the stress concentrations that may cause early brittle fractures and considerably improved the cyclic performance compared to the detail without fillets. (2) As the width of the stiffening plate increased, the stiffness and peak strength increased and energy dissipation capacity decreased. (3) While all specimens failed by a fracture, they could develop a total rotation of 0.04 radian required for special moment resisting frames.

Direction for the Practical Use of RTK-GPS in Cadastral Detail Surveying (지적세부측량에 있어서 RTK-GPS의 실용화 방안)

  • Lee, Woo-Hwa;Hong, Sung-Eon;Oh, Yi-Kyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The accuracy and efficiency of RTK-GPS is proved through its measurement, but it is not used in cadastral detail surveying, due to low accuracy caused by the trouble of satellite reception in a built-up area and lack of detailed guidelines for practical application. Thus, this study tries to offer detailed directions for the practical use of RTK-GPS by analyzing the application problem of RTK-GPS measurement. As results of the study, for the practical use of RTK-GPS it suggests enactment of regulations, connection of practical RTK-GPS measurement with the existing detail surveying methods, introduction of a VRS method for increasing the arrangement density of reference stations, and integrated use of GPS, GLONASS and Galileo satellites for securing accuracy and stability.

  • PDF

A Study on the Ontological Apprehension of 'Tectonic' and Architectural Details in Carlo Scarpa's Architecture - focused on the way of thinking through Heidegger's existential phenomenology - (`Tectonic`과 Carlo Scarpa 건축(建築)에서의 디테일에 대한 존재론적(存在論的) 이해(理解)에 관한 연구(硏究) -Heidegger의 실존(實存) 현상학적(現象學的) 사유방식(思惟方式)을 중심(中心)으로-)

  • Lee, Sang-Jin;Byun, Tae-Ho
    • Journal of architectural history
    • /
    • v.11 no.1 s.29
    • /
    • pp.49-64
    • /
    • 2002
  • The recently published papers and essays regarding 'tectonic' bring us to rumination of its importance on comprehending modern architectural process. Many architectural theorists may seem to seek the substance of architecture through the discussion of 'tectonic' for the purpose of overcoming the dilemma of representation which can be easily found in modern architectural forms. Their emphasizing on its double-faced aspect as the manner of representation, that is semantic and aesthetic, may imply the significance of philosophical approach especially to the recent architectural phenomena. From this point, it ought to be meaningful to manifest etymological connection between the terms with semantic analysis and interpret the substance and ontological meaning of 'tectonic' referring Martin Heidegger's existential philosophy. Besides the works of Carlo Scarpa, that are known as the art of making, are exampled to prove the way how the ontological meaning of practical act is exposed on an artwork. The idea of 'tectonic' connotes not only technological aspect as construction of form and space, but also ontological aspect as joint or detail, that is the result of logos. The 'tectonic' means etymologically 'joint' having double-meaning structure, technology and aesthetics. It means 'detail' as minimum units of architectural form and as sites where making relationship or connection takes place in the way of ontological apprehension. The 'detail' as the place of innovation and invention implies the culture of an area, and expresses craftsmanship, which modem architecture buries in oblivion. This study aims to deviate from the aesthetical commercialization in which the modern architecture tends to fall, and further, propose the possible way to succeed traditional locality in an epistemological point of view.

  • PDF

Analysis Evaluation of Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (격점구조형식에 따른 복합트러스교의 비틀림 거동 해석)

  • Choi, Ji-Hun;Jung, Kwang-Hoe;Kim, Tae-Kyun;Lee, Sang-Won;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2014
  • Hybrid Truss Bridge (HTB) uses steel truss webs instead of concrete webs in prestressed box girder bridges, which is becoming popular due to its structural benefits such as relatively light self-weight and good aesthetics appearance. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The research was performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showed that HTB applied to a curved bridge or an eccentrically loaded bridge had a weak torsional capacity compared to an ordinary PSC box girder bridge due to the open cross-sectional characteristic of HTB. Therefore, three types of girders with different joint system between truss web member and concrete slab were tested for their torsional capacity. In this study, the three different types of HTB girders under torsional loading were simulated using FEM analysis to investigate the torsional behavior of HTB girders more in detail. The results are discussed in detail in the paper.