• 제목/요약/키워드: Connected beam

검색결과 324건 처리시간 0.023초

단부 보강에 따른 U-플랜지 트러스 보의 구조 내력에 관한 실험 연구 (Experimental Study on the Structural Capacity of the U-Flanged Truss Steel Beam With Reinforced End by Steel Plates)

  • 오명호;김영호
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.31-38
    • /
    • 2020
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars. Upper flange and lower plate are connected by the diagonal lattice bars welded on the upper and lower sides. In this study, the details of delayed buckling of lattice members were developed through reinforcement of the end section, in order to improve structural capacity of U-flanged Truss Steel Beam. To verify the effects of these details, the simple beam experiment was conducted. The maximum capacity of all the specimens were determined by the buckling of the lattice. The vertical reinforced details of the ends with steel plates, rather than the details reinforced with steel bars, are confirmed to be a valid method for enhancing the structural capacity of the U-flanged Truss beam. In addition, U-flanged Truss Steel Beam with reinforced endings with steel plates can exhibit sufficient capacity of the lattice buckling by the formulae according to Korean Building Code (KBC, 2016) and Eurocode 3.

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.

도로 폭이 좁은 굴착공사에서 연결부가 적용되는 장지간 주형의 수치해석적 거동 평가 (Numerical Analysis on the Structure Behavior of the Connected Long-span Beam during Excavation in Narrow Streets)

  • 최광수;하상봉;이환우
    • 한국전산구조공학회논문집
    • /
    • 제33권4호
    • /
    • pp.263-270
    • /
    • 2020
  • 본 연구의 대상은 도로 폭이 좁은 시가지에서 굴착공사 시 적용되는 장지간 주형의 연결부이다. 일반적으로 적용되고 있는 연결부에서 상부 플랜지의 단차와 피로균열 등의 문제로 연결부의 신뢰도가 저하된다. 연결부의 결함을 보완하고 안전성을 향상시킨 개선형 연결부를 개발하였다. 유한요소 기반의 상용프로그램(ABAQUS)를 이용하여 개선형 연결부의 거동을 평가하였다. 먼저, 개선형 연결부에 적용되는 고장력 볼트 연결 및 강재와 콘크리트의 합성거동을 구현하기 위한 수치해석 방법을 제안하였다. 비교논문의 실험결과와 수치해석 결과의 비교를 통하여 개선형 연결부를 해석하는데 있어 수치해석 방법의 적합성을 검증하였다. 본 연구에서 제안하는 수치해석 방법을 적용하여 개선형 연결부와 일반형 연결부가 적용된 장지간 주형을 해석하였다. 장지간 주형의 탄소성 거동과 연결부의 응력분포를 수치 해석적으로 비교분석하였다. 개선형 연결부의 도입으로 25%의 압축응력이 감소되며 구조적 성능 개선효과 및 안전성을 확인하였다.

Geometrically nonlinear analysis of plane frames composed of flexibly connected members

  • Gorgun, H.
    • Structural Engineering and Mechanics
    • /
    • 제45권3호
    • /
    • pp.277-309
    • /
    • 2013
  • Beam-to-column connections behaviour plays an important role in the analysis and design of steel and precast concrete structures. The paper presents a computer-based method for geometrically nonlinear frames with semi-rigid beam-to-column connections. The analytical procedure employs modified stability functions to model the effect of axial force on the stiffness of members. The member modified stiffness matrix, and the modified fixed end forces for various loads were found. The linear and nonlinear analyses were applied for two planar steel structures. The method is readily implemented on a computer using matrix structural analysis techniques and is applicable for the efficient nonlinear analysis of frameworks.

철근콘크리트 기둥과 철골보의 접합부 개발 및 지압성능에 관한 시험적 연구 (A Study on the Development and Test on Bearing Resistance of R/C Column-Steel Girder Connection)

  • 최광호;이세웅;김재순;김상식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.515-520
    • /
    • 1997
  • This research is aimed at the development of the composite beam-column connection system by which the steel beam can be connected to the R/C column with smooth stress transfer. As the first step of the structural performance tests of the system, bearing resistance test has been carried out for actual size specimen. From the test, the connection system has been proved to take good bonding and stress transfer to the surrounding concrete with negligible relative displacements.

  • PDF

압전형 센서/액추에이터를 이용한 진동구조물의 능동-수동제어 (Active-passive control of flexible sturctures using piezoelectric sensor/actuator)

  • 고병식
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.313-325
    • /
    • 1995
  • Two active/passive vibration dampers were designed to control a cantilever beam first mode of vibration. The active element was a piezoelectric polymer, polyvinlidene fluoride (PVDF). The passive damping was provided by the application of a viscoelastic layer on the surface of the steel beam. Two substantially different damper configurations were designed and tested. One damper consisted of a piezoelectric actuator bonded to one face of the beam, with a viscoelastic layer applied to the other surface of the beam. The second one was composed of a layer viscoeastic layer with one surface bonded to the beam, and with other being constrained by nine piezoelectric actuators connected in parallel. A control law based on the sign of the angular velocity of the cantilever beam was implemented to control the beam first mode of vibration. The piezoelectric sensor output was digitally differentiated to obtain the transverse linear velocity, and its sign was used in the control algorith. Two dampers provided the system a damping increase of a factor of four for the first damper and three for the second damper. Both dampers were found to work well at low levels of vibration, suggesting that they can be used effectively to prevent resonant vibrations in flexible structure from initiating and building up.

  • PDF

Experimental study of the behavior of beam-column connections with expanded beam flanges

  • Ma, Hongwei;Wang, Jiwei;Lui, Eric M.;Wan, Zeqing;Wang, Kun
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.319-327
    • /
    • 2019
  • This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.

Seismic behavior of post-tensioned precast reinforced concrete beam-to-column connections

  • Cheng, Chin-Tung
    • Computers and Concrete
    • /
    • 제5권6호
    • /
    • pp.525-544
    • /
    • 2008
  • In this research, the self-centering effect in precast and prestressed reinforced concrete structures was investigated experimentally. The reinforced concrete beams and columns were precast and connected by post-tensioning tendons passing through the center of the beams as well as the panel zone of the connections. Three beam-to-interior-column connections were constructed to investigate parameters such as beam to column interfaces (steel on steel or plastic on plastic), energy dissipating devices (unbonded buckling restrained steel bars or steel angles) and the spacing of hoops in the panel zone. In addition to the self-centering effect, the shear strength in the panel zone of interior column connections was experimentally and theoretically evaluated, since the panel zone designed by current code provisions may not be conservative enough to resist the panel shear increased by the post-tensioning force.

Data-Driven-Based Beam Selection for Hybrid Beamforming in Ultra-Dense Networks

  • Ju, Sang-Lim;Kim, Kyung-Seok
    • International journal of advanced smart convergence
    • /
    • 제9권2호
    • /
    • pp.58-67
    • /
    • 2020
  • In this paper, we propose a data-driven-based beam selection scheme for massive multiple-input and multiple-output (MIMO) systems in ultra-dense networks (UDN), which is capable of addressing the problem of high computational cost of conventional coordinated beamforming approaches. We consider highly dense small-cell scenarios with more small cells than mobile stations, in the millimetre-wave band. The analog beam selection for hybrid beamforming is a key issue in realizing millimetre-wave UDN MIMO systems. To reduce the computation complexity for the analog beam selection, in this paper, two deep neural network models are used. The channel samples, channel gains, and radio frequency beamforming vectors between the access points and mobile stations are collected at the central/cloud unit that is connected to all the small-cell access points, and are used to train the networks. The proposed machine-learning-based scheme provides an approach for the effective implementation of massive MIMO system in UDN environment.

복합재 티모센코 보의 굽힘 비틀림 연성 진동에 대한 엄밀해 (Exact Solutions for Bending-Torsion Coupled Vibration of Composite Timoshenko Beam)

  • 홍성욱;강병식;박중윤
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1559-1566
    • /
    • 2001
  • This paper proposes a dynamic analysis method for obtaining exact solutions of composite Timoshenko beams, which are inherently subjected to both the bending , and torsional vibrations. In this paper, the bending-torsion coupled vibration of composite Timoshenko beam is rigorously modelled and analyzed. Two numerical examples are provided to validate and illustrate the bending-torsion coupled vibration of composite Timoshenko beam structure. The numerical examples prove that the proposed method is of great use for the dynamic analysis of dynamic structures composed of multiply connected composite Timoshenko beams.