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Abstract  

 In this paper, we propose a data-driven-based beam selection scheme for massive multiple-input and 

multiple-output (MIMO) systems in ultra-dense networks (UDN), which is capable of addressing the problem of 

high computational cost of conventional coordinated beamforming approaches. We consider highly dense small-

cell scenarios with more small cells than mobile stations, in the millimetre-wave band. The analog beam selection 

for hybrid beamforming is a key issue in realizing millimetre-wave UDN MIMO systems. To reduce the 

computation complexity for the analog beam selection, in this paper, two deep neural network models are used. 

The channel samples, channel gains, and radio frequency beamforming vectors between the access points and 

mobile stations are collected at the central/cloud unit that is connected to all the small-cell access points, and 

are used to train the networks. The proposed machine-learning-based scheme provides an approach for the 

effective implementation of massive MIMO system in UDN environment. 
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1. Introduction 

Wireless communication services have recently been expanding into various fields, including the internet 

of things (IoT), virtual reality applications, and machine-to-machine communication, in addition to the existing 

voice and data services. There are currently 1 billion cellular IoT connected devices in the world, with an 

expected 4.1 billions by 2024 [1]. Various studies have investigated ways to effectively accommodate the 

rapidly increasing mobile traffic [2–4]. Small cells and coordinated multi-point (CoMP) transmission and 

reception were introduced in fourth generation (4G) mobile communication [5, 6] as key technologies to handle 

this issue. These technologies allow multiple transmission nodes to increase their transmission capacity 

through coordinated signal processing. 

New network technologies are needed in fifth generation (5G) mobile communication, to accommodate the 
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large data traffic in various cell types. Ultra-dense networks (UDNs) are being considered as a new network 

technology in which various small cell types can be deployed, with the number of small cells in the networks 

being greater than the number of active mobile stations (MSs) [4]. Because these small cells are being more 

densely deployed in 5G UDNs than in 4G heterogeneous networks, the separation between cells using the 

same frequencies is shortened. As a result, MSs are close to more cells than in a conventional network, and 

severe inter-cell interference may occur. Moreover, a UDN with a reduced cell radius can lead to frequent 

handovers caused by terminal mobility, which can greatly affect the performance of 5G communication 

systems. Additionally, in the directional communications in the millimetre-wave band considered in 5G, 

additional indirect handovers may occur because of obstacles. In CoMPs, all the decisions must be made at the 

central unit, based on the overall information on the network being reported in real time. Moreover, beam 

training massive multiple-input and multiple-output (MIMO) systems generates large overheads in 

beamforming [7]. Therefore, to implement massive MIMO systems in 5G UDN, an advanced, low-complexity 

coordinated beamforming (CB) scheme is required, to rapidly select a serving cell and the corresponding 

beamforming vector, and thus address both MS mobility and channel environment changes in real time. 

Data-driven deep learning methods have shown excellent performance in various fields such as image 

classification, translation, and autonomous driving. In recent years, the application of machine learning to 

wireless communication systems has been studied using algorithms such as channel estimation [8] and hybrid 

precoding [9]. Machine-learning-based communication technologies can greatly reduce the time complexity 

of the involved algorithms. In this paper, we present an approach to integrate machine learning into the CB of 

massive MIMO systems in UDN contexts. We focus on achieving lower computational complexity and near-

optimal performance compared to conventional methods [10] for the practical implementation of massive 

MIMO system in UDN. We have termed this machine-learning-based coordinated beamforming (ML-CB), 

consisting of two-stage deep neural network (DNN) models is capable of reducing the computational 

complexity required for CB in an environment with more deployed cells than MSs. Samples of the channel 

between the access unit (AU) of each small cell and an MS cell are obtained, and the optimal serving cell and 

best radio frequency (RF) beamforming vector are predicted by the DNN models, which has been trained to 

learn the relationship among channel samples, channel gain, and the results of conventional beam training. The 

performance of the proposed scheme is compared with that of the conventional approach, which finds the 

optimal solution by exhaustive search. The paper is organized as follows. In Section 2, the system model is 

described. Section 3 introduces the proposed ML-CB. The system performance as a function of the cell density 

in UDN and discussion are presented. Finally, Section 5 concludes the paper. 

 

2. System model 

We consider a millimetre-wave massive MIMO system based on 5G new radio (NR) access technology 

[11]. In this system, 𝑁𝑆  AUs with a uniform rectangular array of 𝑁𝑡  antennas, and one MS with 𝑁𝑟 

antennas are deployed in a highly dense arrangement of 𝑁𝑆  small cells. The small cells are uniformly 

deployed, as in an urban micro cell scenario [12]. It is assumed that all the AUs are connected to a 

centralized/cloud processing unit (CU). The uplink pilot signal from an MS is received by all AUs, and the 

serving cell and RF beamforming vector for downlink data transmission are determined at the CU. In the 

downlink and uplink transmission operations, the modulation coding scheme and RF beamforming vector are 

determined for each resource block (RB). Therefore, in this study, we use a channel vector that averages a 

given channel matrix into 12 subcarriers per RB for system modelling. For a total of K RBs, the signal received 

from an MS by the nth AU, at the kth RB, 𝑦𝑛,𝑘, can be written as 
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𝑦𝑛,𝑘 = 𝐻𝑛,𝑘
𝑢 𝑢𝑛,𝑘 + 𝜂𝑛,𝑘,                            (1) 

 

where 𝐻𝑛,𝑘
𝑢 ∈ ℂ𝑁𝑟×𝑁𝑡  is a millimetre-wave channel as in [12], and the downlink channel 𝐻𝑛,𝑘  can be 

estimated by exploiting the block sparsity of the channel matrix and channel reciprocity in time-division duplex 

mode [13]. In addition, 𝑢𝑛,𝑘  is the uplink pilot signal, and 𝜂𝑛,𝑘~𝑁ℂ(0, 𝜎2)  is the noise vector. The 

information related with 𝐻𝑛,𝑘 is fed back from all AUs to the CU, and the serving cell and RF beamforming 

vector are then selected according to 

 

{𝑛∗, 𝑖∗} = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑤𝑖

RF∈𝐹RF

𝑛∈𝑁𝑆

‖𝐻𝑛,𝑘𝑤𝑖
RF‖,    (2) 

 

where 𝑖 = 1, . . . , 𝑁𝑐
2 , 𝑁𝑐

2  being the length of the RF beamforming codebook, 𝐹𝑅𝐹 . The MS is therefore 

covered by the RF beam 𝑖∗  from AU 𝑛∗, as per (2). The RF beamforming codebook is generated by a 

Kronecker-product of two discrete Fourier transform codebooks [14], one for each (vertical and horizontal) 

dimension. An RF beamforming codeword 𝑤𝑖
RF can be expressed as 

 
1

𝑁𝑣
[𝑒−𝑗𝜙(𝑖)𝑛𝑣]

𝑛𝑣=0,...,𝑁𝑣−1
⨂

1

𝑁ℎ
[𝑒−𝑗𝜃(𝑖)𝑛ℎ]

𝑛ℎ=0,...,𝑁ℎ−1
,            (3) 

 

where 𝑁𝑣  and 𝑁ℎ  are the number of antenna elements for the vertical and horizontal dimensions, 

respectively, and 𝜙(𝑖) =
2𝜋𝑖

𝑁𝑐
, 𝜃(𝑖) =

2𝜋𝑖

𝑁𝑐
 denote the zenith and azimuth angles of departure, respectively. 

The beam training required to select the serving cell and best RF beamforming vector at the CU increases as 

per 𝑁𝑠 ×  𝐾 ×  𝑁𝑐
2. Therefore, the overhead of beam training is greatly increased in environments with high 

small-cell density. 

 

3. Data-driven-based Beam Selection 

We propose a data-driven-based beam selection scheme to reduce the computational complexity of beam 

training in scenarios in which the density of small cells is much higher than that of the MSs. The conventional 

scheme to select a serving cell and the best beam according to (2) proceeds by exhaustive search. Even though 

achieving optimal performances, its overhead increases proportionally with the number of small cells. In 

contrast, the proposed scheme can only achieve performances close to those of the conventional method but 

does so with lower computational complexity. 

The proposed ML-CB scheme consists of two steps and uses two DNNs for low complexity. In the first 

step, the channel gains between the MS and the AUs of all the small cells are predicted by a DNN regressor at 

the CU, and the small cell with the largest predicted channel gain is determined. When the MS is moving in 

environments with densely deployed small cells, the first stage approach is also required for low latency cell 

switching. In the second step, a DNN classifier determines the best RF beamforming vector to the MS from 

the best serving AU (determined in the first stage). 

 

3.1 Training Dataset Representation in the First-Stage 

3.1.1 Preprocessing of the Training Dataset 

To construct effective models for both the DNN regressor and the DNN classifier, a large training data set 

is required. In the first step, we randomly deploy a large number of AUs and MSs L times and obtain all the 
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complex channel samples among them. DNNs cannot use complex training data, because their weights and 

biases are real-valued. It is therefore necessary to separate the complex channels into their real and imaginary 

components. We represent every column ℎ𝑛,𝑘,𝑙
𝑖 , 𝑖 = 1, . . . , 𝑁𝑡 of the complex channel vector 𝐻𝑛,𝑘,𝑙 by its two 

components, ℜ{ℎ𝑛,𝑘,𝑙
𝑖 } and ℑ{ℎ𝑛,𝑘,𝑙

𝑖 }. 𝐻𝑛,𝑘,𝑙 can hence be represented by 𝑅𝑚 ∈ ℂ1×2𝑁𝑡, and be expressed 

as 

 

𝑅𝑚 = [ℜ{ℎ𝑚
1 }, ℑ{ℎ𝑚

1 }, . . . , ℜ{ℎ𝑚
𝑁𝑡}, ℑ{ℎ𝑚

𝑁𝑡}],   𝑚 = 1, . . . , 𝑛 ∙ 𝑘 ∙ 𝑙, . . . , 𝑁𝐿,         (4) 

 

where 𝑁𝐿 = 𝑁𝑆  ×  𝐾 ×  𝐿 ×  𝑁𝑟 denotes the number of collected channel samples. 

Millimetre-wave channels have a wide range of channel coefficients because of their frequency-selective 

fading, line-of-sight, and non-line-of-sight characteristics. Standardizing these parameters allows the DNN to 

correctly learn the channel characteristics from the samples. This is important for millimetre-wave massive 

MIMO systems, in particular. The training dataset ℛ consists of only the real components and is expressed 

as ℛ = [𝑅1, . . . , 𝑅𝑁𝐿
]

𝑇
. Moreover, the ith column of ℛ  is expressed as 𝑟𝑖 = [ℜ{ℎ𝑖

1}, . . . , ℜ{ℎ𝑖
𝑁𝐿}]

𝑇
, 𝑟𝑖 ∈

ℂ𝑁𝐿×1, 𝑖 = 1, . . . , 2𝑁𝑡. Every column of ℛ is standardized as follows: 

 

𝑑ℛ
𝑖 =

𝑟𝑖−𝑟𝑖̅

𝜎(𝑟𝑖)
, 𝑑ℛ

𝑖 ∈ ℂ𝑁𝐿×1,    (5) 

 

where 𝑟𝑖̅ and 𝜎(𝑟𝑖) denote the mean value and standard deviation of 𝑟𝑖 , respectively. Consequently, the 

preprocessed training dataset 𝐷𝑅 ∈ ℂ𝑁𝐿×2𝑁𝑡 is given by 

 

𝐷ℛ = [𝑑ℛ
1 , . . . , 𝑑ℛ

2𝑁𝑡] = [𝐷ℛ
1 , . . . , 𝐷ℛ

𝑁𝐿 ]
𝑇
.    (6) 

 

3.1.2 Label Design 

When using DNN models for communication, the training data labels will typically involve key 

performance indicators (KPIs) such as spectral efficiency, bit error rate, received signal power, and channel 

gain. We use channel gain as the KPI in the first stage. The serving cell selection approach using a channel 

gain criterion is the simplest approach to CB. When 𝐷ℛ
𝑖  is the ith row vector of a 𝐷ℛ matrix, the channel 

gain 𝐶𝑖 of channel 𝐷ℛ
𝑖  can be expressed as 𝐶𝑖 = ‖𝐷ℛ

𝑖 ‖
2
. This value is used as the label for training data 𝐷ℛ

𝑖 . 

The label 𝐶  corresponding to 𝐷ℛ  is expressed as 𝐶 = [𝐶1, . . . , 𝐶𝑁𝐿
]

𝑇
. The DNN regressor predicts 

continuous quantities 𝐶̂ for the test dataset. 

 

3.2 Training Dataset Representation in the Second-stage 

3.2.1 Preprocessing of the Training Dataset 

In this stage, channel samples are generated as in the first stage, and the RF beamforming codebook given 

by (3) is used as raw data for training the DNN classifier. The RF beamforming vector 𝑤i
RF, which is a 

complex vector, is also separated into real and imaginary components. The millimetre channels and the RF 

beamforming codebook are normalized with (5), so that the same criteria can be used when training. 

Consequently, the preprocessed training dataset, 𝐷𝐶 ∈ ℂ(𝑁𝑐
2+𝑁𝐿)×2𝑁𝑡 is given by 

Table 1. Label design in the classifier model. 

RF BF vector Integer One-hot encoding Length of encoded 
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encoding vector 

𝑤0
RF 1 1 0 0 0 0 ⋯  0 0 0 0 

𝑁𝑐
2 

𝑤1
RF 2 0 1 0 0 0 ⋯  0 0 0 0 

⋮ ⋮ ⋮ 

𝑤𝑁𝑐
2−2

RF  𝑁𝑐
2 − 1 0 0 0 0 0 ⋯  0 01 0 

𝑤𝑁𝑐
2−1

RF  𝑁𝑐
2 0 0 0 0 0 ⋯  0 0 0 1 

 

 

𝐷𝐶 = [𝑑𝐶
1 , . . . , 𝑑𝐶

𝑁𝑐
2

, 𝑑𝐶
𝑁𝑐

2+1
, . . . , 𝑑𝐶

𝑁𝑐
2+𝑁𝐿 ]

𝑇

,   (7) 

 

where the vectors 𝑑𝐶
1  to 𝑑𝐶

𝑁𝑐
2

 denote the preprocessed RF beamforming codebook training data, and the 

vectors 𝑑𝐶
𝑁𝑐

2+1
 to 𝑑𝐶

𝑁𝑐
2+𝑁𝐿  denote the preprocessed training channel samples. 

 

3.2.2 Label Design 

The label in the second stage is designed to classify RF beams highly correlated with the channels, i.e. a 

training dataset. First, conventional CB [15] is performed with the channel samples using (2), and an RF 

beamforming vector highly correlated with each channel sample is selected. Each RF beamforming vector 

denotes a unique class; an integer value is assigned to each RF beamforming vector, to allow the DNN classifier 

to classify the RF beam corresponding to each channel sample. The second column of Table 1 shows the 

assigned integers. Next, one-hot encoding is used to represent the integer value, as shown in the third column 

in Table 1. The length of the one-hot encoding vector is 𝑁𝑐
2, which is equal to the number of classes. The label 

ℐ corresponding to 𝐷𝐶 is expressed as follows: ℐ = [ℐ1, . . . , ℐ𝑁𝐿
]

𝑇
. The DNN classifier predicts all the labels 

ℐ̂ for the test dataset. 

 

3.3 Building the Neural Networks 

In this section, we describe how to build the DNN regressor and DNN classifier models, and train them 

with the training datasets 𝐷ℛ, 𝐷𝐶, C, and ℐ described in the previous sections. Our focus in this study is on 

the use of machine learning for CB with the context of 5G UDN implementation, not on the development or 

optimization of neural networks. Therefore, uncomplicated DNN models are used in the proposed ML-CB 

system. DNNs of this paper were built using the best performing network architecture as determined from 

experiments. Both the regressor and classifier models consist of five hidden dense layers. Each hidden layer 

uses the rectifier linear unit activation function. The optimizer uses the Adam method, which considers both 

gradient and learning rate, and is not affected by the rescaling of the gradient [16]. The batch size was 200, 

and the regressor and classifier models were trained with 10,000 and 1,000 iterations, respectively. The two 

DNN models have different structures in the output layer (OL) and compiler, because of their specific tasks. 

The regressor model has one node in the OL to predict the label of the test data. The mean-squared error (MSE) 

is used as the loss function in the compiler. It is defined as 

 

ℒMSE =
1

𝑁𝐿
∑ (𝐶𝑖 − 𝐶̂𝑖)

2𝑁𝐿
𝑖=1 .       (8) 
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(a) DNN regressor model configuration 

 

 
(b) DNN classifier model configuration 

 

Figure 1. Proposed DNN model configurations. 

 

The regressor model is trained to minimize ℒMSE. The number of nodes in the OL of the classifier model 

is the same as the number of classes, and softmax activation is used. The categorical cross-entropy is used as 

a loss function in the compiler. It is defined as 

 

ℒCCE = − ∑ (ℐ̂𝑖 ∗ 𝑙𝑜𝑔(ℱ(𝑠)𝑖))
𝑁𝑐

2

𝑖=1 ,      (9) 

 

where ℱ(𝑠)𝑖 denotes the softmax function, 𝑠 is the output score, and ℱ(𝑠)𝑖 = 𝑒𝑠𝑖 ∑ 𝑒𝑠𝑗𝑁𝑐
2

𝑗⁄ . A smaller value 

for ℒCCE means that ℐ̂𝑖 is more similar to the matching label. The detail configuration for two DNN models 

is shown as Fig. 1. 

 

3.4 Operation of the ML-CB-based Massive MIMO System 

In the proposed system, the regressor and classifier models learn from the training datasets described above, 

optimizing their weights. The optimized DNN models and weights are stored at the CU. In a network of dense 

small cells and one MS, the estimated downlink channel information in 𝑦𝑛,𝑘  is fed back to the CU. The 

serving cell is determined by the trained regressor model after preprocessing the test data. The channel 

information between the serving cell and the MS is extracted, and the best RF beamforming vector is then 

determined by the trained classifier model. The CU transmits the hybrid precoding matrix processed by the 

selected beamforming vector to the AU of the selected serving cell, and the downlink transmission operation 

is performed by the designated AU. 
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Figure 2. Spectral efficiency performance versus cell density. 

 

Figure 3. Computation times versus cell density. 

 

4. Numerical Results and Discussion 

In this section, we evaluate the performance of the proposed ML-CB-based massive MIMO system in UDN 

contexts. The spectral efficiency and computation times of conventional CB and the proposed ML-CB are 

compared. 
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The massive MIMO system and UDN context were designed in MATLAB®  (R2018a). The Keras tool with 

a TensorFlow backend engine was used to implement the DNN models on a computer with an Intel® Core™ 

i7-8700 at 3.20 GHz, an NVIDIA GeForce RTX 2070, and 16 GB of memory. We considered a carrier 

frequency of 28 GHz and a system bandwidth of 100 MHz. All AUs were equipped with a 4 ×  4 uniform 

rectangular array, and an MS with a single antenna was considered. We assumed a dense arrangement of small 

cells of 30-m radii. All the AUs of the small cells were at a distance of 20 m from the MS; that is: the AUs 

were placed at the vertices of a regular polygon, and the MS was located at its centre. The training and 

validation data sizes were approximately 51,000 and 9,000, respectively. A NR transmission frame was chosen 

and a subcarrier spacing of 60 kHz was considered in the 100 MHz band. One test data point was derived per 

RB, and 125 test data points were generated per subframe. The number of classes 𝑁𝑐
2 was 1,024, for an 

assumed 10-bit RF codebook. The measured mean absolute error of the DNN regressor was found to be 0.1067, 

and the training and validation accuracies of the DNN classifier were 95.83% and 94.76%, respectively. 

Fig. 2 shows the spectral efficiency as a function of the cell density 𝜆, for different beamforming schemes. 

The density indicates the number of small cells that can be connected to the MS. As shown, the ML-CB 

approach approaches the optimal performance, although there is some error in the prediction obtained by 

machine learning. The non-CoMP system results refer to a system in which the MS continues to be covered 

by a particular AU without multi-point cooperation. A non-CoMP ML based beamforming (ML-BF) represents 

the system with only the second stage applied. The obtained results show that in non-CoMP systems, the non-

CoMP ML-BF can obtain a performance close to that of the non-CoMP conventional systems. These results 

show constant performance regardless of the cell density. In CoMP systems, higher spectral efficiencies can 

be obtained as the cell density increases, but the results show that the system performance starts to saturate 

gradually at 𝜆 = 5. This shows that there is a limit to the performance improvements obtained by increasing 

the cell density. 

Fig. 3 shows the computation times of the conventional and ML-CB systems (the time required to determine 

the best serving cell and RF beam). To allow a fair evaluation of the computation time of both schemes, they 

were both processed using the GPU. In fact, the computation time using a CPU for the conventional scheme 

is similar to that using the GPU. In the conventional scheme, the computation time increases proportionally to 

the cell density. In contrast, the computation time of the ML-CB scheme is highly insensitive to cell density. 

At 𝜆 = 2  point, the computation time of conventional and ML-CB schemes is about 16s and 0.328s, 

respectively. This means that, when the conventional scheme is applied in our system, the beamformed 

downlink signal reaches its previous position when a pedestrian travelling at a speed of 3 km/h moves to a 

position 12.5 m away from the position which the uplink signal was transmitted. As the density of small cells 

increases, that gap widens. On the other hand, the ML-CB system can transmit the downlink signal when the 

pedestrian passes 0.272 m. This shows that the ML-based CB can guarantee low transmission delays and 

constitutes an essential approach, in terms of computation time, for the implementation of low-latency 5G 

UDNs. 

 

5. Conclusion 

In this study, we investigated an ML-based coordinated beamforming approach for millimetre-wave 

massive MIMO systems in UDN contexts. The CoMP approach can degrade system performance in an 

environment in which the number of small cells is larger than the number of MSs. To reduce the computation 

complexity for the coordinated beamforming, two DNN models are investigated. The proposed ML-CB can 

achieve coordinated beamforming with near-optimal performance and short computation times. It is efficient 

and easy to implement millimeter-wave MIMO systems in UDN. The proposed approach can also be applied 
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for fast and suitable beamforming and handover in various wireless communication fields including vehicle to 

infrastructure and massive machine type communications where UDN is considered. In future work, we will 

determine whether novel coordinated transmission processing schemes can be developed based on the 

proposed approach, for various interference environments. 

 

Acknowledgement 

This work was financially supported by the Research Year of Chungbuk National University in 2020. 

 

References 
 

[1] Ericsson: “Ericsson mobility report (Revision A),” 2019. 

[2] P. Wang, Y. Li, L. Song, B. Vucetic, “Multi-gigabit millimeter wave wireless communications for 5G: from fixed 

access to cellular networks,” IEEE Commun. Mag., vol. 53, no. 1, pp. 168–178, 2015. 

DOI: https://doi.org/10.1109/MCOM.2015.7010531 

[3] F. Sohrabi, W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. 

Topics Signal Process., vol. 10, no. 3, pp. 501–513, 2016. 

DOI: https://doi.org/10.1109/JSTSP.2016.2520912 

[4] D. Lopez-Perez, M. Ding, H. Claussen, A. H. Jafari, “Towards 1 Gbps/UE in cellular systems: Understanding ultra-

dense small cell deployments,” IEEE Commu. Surv. Tutor., vol. 17, no. 4, pp. 2078–2101, 2015. 

DOI: https://doi.org/10.1109/COMST.2015.2439636 

[5] D. Lee, H. Seo, B. Clerckx, et al., “Coordinated multipoint transmission and reception in LTE-Advanced: 

deployment scenarios and operational challenges,” IEEE Commun. Mag., vol. 50, no. 2, pp. 148–155, 2012. 

DOI: https://doi.org/10.1109/MCOM.2012.6146494 

[6] 3GPP, “Scenario and requirements for small cell enhancements for E-UTRA and E-UTRAN (Release 12),” 3GPP, 

Sophia Antipolis, France, Tech. Rep. TR 36.932 V12.1.0, 2013. 

[7] V. Jungnickel, K. Manolakis, W. Zirwas, et al., “The role of small cells, coordinated multipoint, and massive MIMO 

in 5G,” IEEE Communications Magazine, vol. 52, no. 5, pp. 44–51, 2014. 

DOI: https://doi.org/10.1109/MCOM.2014.6815892 

[8] M. Soltani, V. Pourahmadi, A. Mirzaei, H. Sheikhzadeh, “Deep learning-based channel estimation,” IEEE Commun. 

Lett., vol. 23, no. 4, pp. 652–655, 2019. 

DOI: https://doi.org/10.1109/LCOMM.2019.2898944 

[9] H. Huang, Y. Song, J. Yang, G. Gui, F. Adachi, “Deep-learning-based millimeter-wave massive MIMO for hybrid 

precoding,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 3027–3032, 2019. 

DOI: https://doi.org/10.1109/TVT.2019.2893928 

[10] S. Schwarz, C. Mehlfuhrer, and M. Rupp, "Calculation of the spatial preprocessing and link adaption feedback for 

3GPP UMTS/LTE," in 6th conference on Wireless advanced (WiAD), IEEE, 2010. 

DOI: https://doi.org/10.1109/WIAD.2010.5544947 

[11] 3GPP, “Physical channels and modulation (Release 15),” 3GPP, Tech. Spec. TS38.211, V15.0.0, 2017. 

[12] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz (Release 14),” 3GPP, Tech. Rep. TR38.901, 

V14.3.0, 2017. 

[13] Y. Na, L. Zhang, X. Sun, “Efficient downlink channel estimation scheme based on block-structured compressive 

sensing for TDD massive MU-MIMO systems,” IEEE Wireless Commun. Lett., vol. 4, no. 4, pp. 345–348, 2015. 

DOI: https://doi.org/10.1109/LWC.2015.2414933 

[14] B. Hochwald, T. Mazetta, T. Richardson, W. Sweldens, R. Urbanke, “Systematic design of unitary space-time 

constellations,” IEEE Trans. Inform. Theory, vol. 46, no. 6, pp. 1962–1973, 2000. 

DOI: https://doi.org/10.1109/18.868472 



International Journal of Advanced Smart Convergence Vol.9 No.2 58-67 (2020)                                     67 

 

[15] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, "Coordinated Multipoint 

Transmission and Reception in LTE-Advanced: Deployment Scenarios and Operational Challenges," IEEE 

Communications Magazine, vol. 50, no. 2, pp. 148–155, Feb. 2012. 

DOI: https://doi.org/10.1109/MCOM.2012.6146494 

[16] D. Kingma, J. Ba, “ADAM: a method for stochastic optimization,” ICLR, 2015. [Online]. Available: 

https://arxiv.org/abs/1412.6980 

 

 




