• Title/Summary/Keyword: Connected Component Labeling (CCL)

Search Result 8, Processing Time 0.026 seconds

Parallel Connected Component Labeling Based on the Selective Four Directional Label Search Using CUDA

  • Soh, Young-Sung;Hong, Jung-Woo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.3
    • /
    • pp.83-89
    • /
    • 2015
  • Connected component labeling (CCL) is a mandatory step in image segmentation where objects are extracted and uniquely labeled. CCL is a computationally expensive operation and thus is often done in parallel processing framework to reduce execution time. Various parallel CCL methods have been proposed in the literature. Among them are NSZ label equivalence (NSZ-LE) method, modified 8 directional label selection (M8DLS) method, HYBRID1 method, and HYBRID2 method. Soh et al. showed that HYBRID2 outperforms the others and is the best so far. In this paper we propose a new hybrid parallel CCL algorithm termed as HYBRID3 that combines selective four directional label search (S4DLS) with label backtracking (LB). We show that the average percentage speedup of the proposed over M8DLS is around 60% more than that of HYBRID2 over M8DLS for various kinds of images.

An Improved Hybrid Approach to Parallel Connected Component Labeling using CUDA

  • Soh, Young-Sung;Ashraf, Hadi;Kim, In-Taek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In many image processing tasks, connected component labeling (CCL) is performed to extract regions of interest. CCL was usually done in a sequential fashion when image resolution was relatively low and there are small number of input channels. As image resolution gets higher up to HD or Full HD and as the number of input channels increases, sequential CCL is too time-consuming to be used in real time applications. To cope with this situation, parallel CCL framework was introduced where multiple cores are utilized simultaneously. Several parallel CCL methods have been proposed in the literature. Among them are NSZ label equivalence (NSZ-LE) method[1], modified 8 directional label selection (M8DLS) method[2], and HYBRID1 method[3]. Soh [3] showed that HYBRID1 outperforms NSZ-LE and M8DLS, and argued that HYBRID1 is by far the best. In this paper we propose an improved hybrid parallel CCL algorithm termed as HYBRID2 that hybridizes M8DLS with label backtracking (LB) and show that it runs around 20% faster than HYBRID1 for various kinds of images.

GPU-based Object Extraction for Real-time Analysis of Large-scale Radar Signal (대규모 레이더 신호 데이터의 실시간 분석을 위한 GPU 기반 객체 추출 기법)

  • Kang, Young-Min
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1297-1309
    • /
    • 2016
  • In this paper, an efficient connected component labeling (CCL) method was proposed. The proposed method is based on GPU parallelism. The CCL is very important in various applications where images are analysed. However, the label of each pixel is dependent on the connectivity of adjacent pixels so that it is not very easy to be parallelized. In this paper, a GPU-based parallel CCL techniques were proposed and applied to the analysis of radar signal. Since the radar signals contains complex and large data, the efficiency of the algorithm is crucial when realtime analysis is required. The experimental results show the proposed method is efficient enough to be successfully applied to this application.

Real-Time Object Segmentation in Image Sequences (연속 영상 기반 실시간 객체 분할)

  • Kang, Eui-Seon;Yoo, Seung-Hun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.173-180
    • /
    • 2011
  • This paper shows an approach for real-time object segmentation on GPU (Graphics Processing Unit) using CUDA (Compute Unified Device Architecture). Recently, many applications that is monitoring system, motion analysis, object tracking or etc require real-time processing. It is not suitable for object segmentation to procedure real-time in CPU. NVIDIA provide CUDA platform for Parallel Processing for General Computation to upgrade limit of Hardware Graphic. In this paper, we use adaptive Gaussian Mixture Background Modeling in the step of object extraction and CCL(Connected Component Labeling) for classification. The speed of GPU and CPU is compared and evaluated with implementation in Core2 Quad processor with 2.4GHz.The GPU version achieved a speedup of 3x-4x over the CPU version.

Image Analysis for Surveillance Camera Based on 3D Depth Map (3차원 깊이 정보 기반의 감시카메라 영상 분석)

  • Lee, Subin;Seo, Yongduek
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.286-289
    • /
    • 2012
  • 본 논문은 3차원 깊이 정보를 이용하여 감시카메라에서 움직이는 사람을 검출하고 추적하는 방법을 제안한다. 제안하는 방법은 GMM(Gaussian mixture model)을 이용하여 배경과 움직이는 사람을 분리한 후, 분리된 영역을 CCL(connected-component labeling)을 통하여 각각 블랍(blob) 단위로 나누고 그 블랍을 추적한다. 그 중 블랍 단위로 나누는 데 있어 두 블랍이 합쳐진 경우, 3차원 깊이 정보를 이용하여 두 블랍을 분리하는 방법을 제안한다. 실험을 통하여 제안하는 방법의 결과를 보인다.

  • PDF

Automatic Segmentation of Skin and Bone in CT Images using Iterative Thresholding and Morphological Image Processing

  • Kang, Ho Chul;Shin, Yeong-Gil;Lee, Jeongjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.191-194
    • /
    • 2014
  • This paper proposes a fast and efficient method to extract the skin and bone automatically in CT images. First, the images were smoothed by applying an anisotropic diffusion filter to remove noise. The whole body was then detected by thresholding, which was set automatically. In addition, the contour of the skin was segmented using morphological operators and connected component labeling (CCL). Finally, the bone was extracted by iterative thresholding.

Stable Face Detection using Skin-tone and AdaBoost Algorithm (피부 색상 및 아다부스트 알고리즘을 이용한 안정적 얼굴감지)

  • Choi, Yoo-Joo;Byeon, Jae-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.565-568
    • /
    • 2008
  • 본 논문은 RGB 24bit 컬러 영상으로 전달되는 카메라 원영상에 대해 사람의 얼굴을 안정적으로 감지할 수 있는 알고리즘을 제시한다. RGB 입력영상을 HSI 기반의 컬러모델로 변환하여 피부 색상을 추출하고 그리드 영상을 기반으로 CCL (Connected-Component Labeling) 알고리즘을 적용하여 피부 블럽을 검출한 뒤, 아다부스트 알고리즘을 이용하여 얼굴 영역과 얼굴이 아닌 다른 피부 영역을 구분한다. 제안방법은 일반적으로 얼굴 감지를 위하여 폭넓게 사용되고 있는 아다부스트 알고리즘만을 적용하였을 때보다 얼굴감지 오류를 줄일 수 있다.

  • PDF

A study on ITZ percolation threshold in mortar with ellipsoidal aggregate particles

  • Pan, Zichao;Wang, Dalei;Ma, Rujin;Chen, Airong
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.551-561
    • /
    • 2018
  • The percolation of interfacial transition zone (ITZ) in cementitious materials is of great importance to the transport properties and durability issues. This paper presents numerical simulation research on the ITZ percolation threshold of mortar specimens at meso-scale. To simulate the meso-scale model of mortar as realistically as possible, the aggregates are simplified as ellipsoids with arbitrary orientations. Major and minor aspect ratios are defined to represent the global shape characteristics of aggregates. Some algorithms such as the burning algorithm, Dijkstra's algorithm and Connected-Component Labeling (CCL) algorithm are adopted for identification of connected ITZ clusters and percolation detection. The effects of gradation and aspect ratios of aggregates on ITZ percolation threshold are quantitatively studied. The results show that (1) the ITZ percolation threshold is mainly affected by the specific surface area (SSA) of aggregates and shows a global decreasing tendency with an increasing SSA; (2) elongated ellipsoidal particles can effectively bridge isolated ITZ clusters and thus lower the ITZ percolation threshold; (3) as ITZ volume fraction increases, the bridging effect of elongated particles will be less significant, and has only a minor effect on ITZ percolation threshold; (4) it is the ITZ connectivity that is essentially responsible for ITZ percolation threshold, while other factors such as SSA and ITZ volume fraction are only the superficial reasons.