• Title/Summary/Keyword: Conjugated molecule

Search Result 52, Processing Time 0.022 seconds

Synthesis of Small Molecule-Peptide Conjugates as Potential Whitening Agents

  • Lee, Hye-Suk;Shin, Kyong-Hoon;Ryu, Geun-Seok;Chi, Gyeong-Yup;Cho, In-Shik;Kim, Han-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3004-3008
    • /
    • 2012
  • Small molecule conjugated peptides were prepared by solid-phase synthesis as potential novel whitening agents, and their melanogenesis inhibitory activities were investigated. The conjugated small molecules were well-known materials as tyrosinase inhibitors, and peptides were selected from the sequences that are known to antagonize melanocortin receptor 1 (MC1R). Most of small molecules-peptide conjugates showed superior melanin inhibition activity to kojic acid and arbutin. Among these, almost all compounds have -AR- sequence. From this study, we concluded that the small molecule conjugated peptides containing -AR- sequence have melanogenesis inhibitory activities and have potential to be used as novel whitening agents.

Fluorescence Tuning Using Conjugated Aromatic Imine Systems

  • Lee, Ki-Hwan;Park, Chang-Shik;Jeon, Ki-Seok
    • Journal of Photoscience
    • /
    • v.9 no.3
    • /
    • pp.71-74
    • /
    • 2002
  • The fluorescent conjugated aromatic imine derivatives are systematically designed and synthesized as the high yield through the simple one-pot condensation reaction. The emission of the synthesized conjugated aromatic imine derivatives can be tuned efficiently in the range of about 100 nm by the change of electron donating groups constituting parent molecule, which shows the considerable quantum yields from 0.38 to 0.56.

  • PDF

Certification of Gibroblase Cell Adhesion and Spreading Mediated by Arg-Gly-Asp (RGD) Sequence on Thermo-Reversible Hydrogel

  • NA, KUN;DONG-WOON KIM;KEUN-HONG PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.922-927
    • /
    • 2001
  • In an effort to regulate the mammalian cell behavior in entrapment with a gel, we have functionalized hydrogels with the putative cell-binding (-Arg-Gly-Asp-)(RGD) domain. An adhesion molecule of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides, a cell recognition ligand, was induced into thermo-reversible hydrogels, composed of N-isopropylacrylamide with small amounts of acrylic acid (typically 2-5 $mol\%$ in feed), as a biomimetic extracellular matrix (ECM). The GRGDS containing a p(NiPAAm-co-AAc) copolymer gel was studied in vitro for its ability to promote the spreading and viability of cells by introducing a GRGDS sequence. Hydrogel with no adhesion molecule was a poor ECM for adhesion, permiting spreading of only $3\%$ of the seeded cells for 36h. By immobilizing the peptide linkage into the hydrogel, the conjugation of RGD promoted $50\%$ of proliferation for 36h. However, the GREDS sequence, nonadhesive peptide linkage, conjugated hydrogel showed only $5\%$ of the seeded cell for the same time period. In addition, with the serum-free medium, only GRGDS peptides conjugated to hydrogel was able to promotecell spreading, while there was no cell proliferation in the hydrogel without GRGDS. Thus, the GRGDS peptide-conjugated thermo-reversible hydrogel specifically mediated the cell spreading. This result suggests that utilization of peptide sequences conjugating with the cell-adhesive motifs can enhance the degree of cell surface interaction and influence the long-term formation of ECM in vitro.

  • PDF

Various Sensor Applications Based on Conjugated Polymers

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.103.1-103.1
    • /
    • 2014
  • Due to their excellent optical and electrochemical properties, conjugated polymers have attracted much attention over the last two decades and employed to opto-electrical devices. In particular, conjugated polymers possess many attractive features that make them suitable for a variety of sensing task. For example, their delocalized electronic structures can be strongly modified by varying the surrounding environment, which significantly affected molecular energy level. In other word, conjugated polymers can detect and transduce the environmental information into a fluorescence signal. Conjugated polymers also display amplified quenching compared to small molecule counterparts. This amplified fluorescence quenching is attributed to the delocalization and migration of the excitons along the conjugated polymer backbones. Long backbones of conjugated polymer provide the transporting path for electron as a conduit, allowing that excitons migrate rapidly into quencher site along the backbone. This is often referred to as the molecular wire effect or antenna effect. Moreover, structures of conjugated polymers can be easily tailored to adjust solubility, absorption/emission properties, and regulation of electron/energy transfer. Based on this versatility, conjugated polymers have been utilized to many novel sensory platforms as a promising material. In this tutorial, I will highlight a variety of fluorescence sensors base on conjugated polymer and explain their sensory mechanism together with selected examples from reference literatures.

  • PDF

Effects of Fused Thiophene Bridges in Organic Semiconductors for Solution-Processed Small-Molecule Organic Solar Cells

  • Lee, Jae Kwan;Lee, Sol;Yun, Suk Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2148-2154
    • /
    • 2013
  • Three push-pull organic semiconductors, TPA-$Th_3$-MMN (1), TPA-ThTT-MMN (2), and TPA-ThDTT-MMN (3), comprising a triphenylamine donor and a methylene malononitrile acceptor linked by various ${\pi}$-conjugated thiophene units were synthesized, and the effects of the ${\pi}$-conjugated bridging unit on the photovoltaic characteristics of solution-processed small-molecule organic solar cells based on these semiconductors were investigated. Planar bridging units with extended ${\pi}$-conjugation effectively facilitated intermolecular ${\pi}-{\pi}$ packing interactions in the solid state, resulting in enhanced $J_{sc}$ values of the SMOSCs fabricated with bulk heterojunction films.

Characterizations of Novel Poly(aspartic acid) Derivatives Conjugated with γ-Amino Butyric Acid (GABA) as the Bioactive Molecule

  • Kim, Seung-Il;Son, Chang-Mo;Jeon, Young-Sil;Kim, Ji-Heung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.3025-3030
    • /
    • 2009
  • Novel poly(aspartic acid) derivatives conjugated with $\gamma$-amino butyric acid, GABA, moieties, and their amphiphilic analogs were synthesized and characterized. The chemical structures of these polymers were confirmed by FT-IR and $^1H$ NMR spectroscopy. Their physicochemical properties in aqueous media were characterized by electrophonetic light scattering spectrophotometry (ELS), acid-base titration, and UV-spectroscopy. In addition, the in vitro cell activity of the GABA-conjugated polymer was examined. These results indicated that GABA-conjugated poly(aspartic acid) derivatives showed cell-growth activity and nanoparticle formation of a suitable size within aqueous media. These polymers have potential application in the cosmetic and pharmaceutical fields.

Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.132-135
    • /
    • 2015
  • Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.

Synthesis of Merocyanines Analogues Based on the Pyrazolin-5-one System

  • Park, Soo-Youl;Oh, Sea-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.569-572
    • /
    • 2003
  • The majority of dyes belong to the chromophoric class known as donor-acceptor systems. The essential structural feature of such systems is the presence of one or more electron donating groups conjugated to one or more electron withdrawing groups via an unsaturated bridge. The pyrazolin-5-one system is an effective electron acceptor residue, and can also act as a weak electron donor. In our experiments, the various symmetrical and unsymmetrical H-chromophores were synthesized in the indoxyl, imidazo[1,2-a]pyridin-2-one, pyrazolin-5-one, and pyridin-2,6-dione residues, resulting in cross-conjugated donor-acceptor systems. And the visible light absorption was then associated with the migration of electron density from the donor region of the molecule to the acceptor region. Also, it was useful to prepare related non-cross-conjugated donor acceptor chromophores by combining these residues with other electron donor or acceptor moieties. For convenience such chromophores are referred to as merocyanines.

Facile Preparation of Water Dispersible Red Fluorescent Organic Nanoparticles for Cell Imaging

  • Luo, Miao
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1732-1736
    • /
    • 2014
  • Red fluorescent organic nanopaticles (FONs) based on a diarylacrylonitrile derivative conjugated molecule were facilely prepared by surfactant modification. Such red FONs showed excellent water solubility and biocompatibility, making them promising for cell imaging applications.