• 제목/요약/키워드: Conjugated Linoleic

검색결과 358건 처리시간 0.023초

Factors Influencing Biohydrogenation and Conjugated Linoleic Acid Production by Mixed Rumen Fungi

  • Nam, In-Sik;Garnsworthy, Philip C.
    • Journal of Microbiology
    • /
    • 제45권3호
    • /
    • pp.199-204
    • /
    • 2007
  • The objective of this study was to evaluate the effect of soluble carbohydrates (glucose, cellobiose), pH (6.0, 6.5, 7.0), and rumen microbial growth factors (VFA, vitamins) on biohydrogenation of linoleic acid (LA) by mixed rumen fungi. Addition of glucose or cellobiose to culture media slowed the rate of biohydrogenation; only 35-40% of LA was converted to conjugated linoleic acid (CLA) or vaccenic acid (VA) within 24 h of incubation, whereas in the control treatment, 100% of LA was converted within 24 h. Addition of VFA or vitamins did not affect biohydrogenation activity or CLA production. Culturing rumen fungi at pH 6.0 slowed biohydrogenation compared with pH 6.5 or 7.0. CLA production was reduced by pH 6.0 compared with control (pH 6.5), but was higher with pH 7.0. Biohydrogenation of LA to VA was complete within 72 h at pH 6.0, 24 h at pH 6.5, and 48 h at pH 7.0. It is concluded that optimum conditions for biohydrogenation of LA and for CLA production by rumen fungi were provided without addition of soluble carbohydrates, VFA or vitamins to the culture medium; optimum pH was 6.5 for biohydrogenation and 7.0 for CLA production.

Effects of Polyunsaturated Fatty Acids on Intestinal Cell Proliferation

  • Wang, Soo-Gyoung
    • Preventive Nutrition and Food Science
    • /
    • 제4권3호
    • /
    • pp.203-208
    • /
    • 1999
  • The effect of the polyunsaterated fatty acids, linoleic acid(LA), arachidonic acid(AA) and conjugated dienoic linoleic acid(CLA) on IEC-6 cells (rat intestinal cell)proliferation and cell transduction have been determined in vitro. IEC-6 cells proliferation was assessed by cell growth and [3H]-thymidine incroporation analysis. At 10 μM concentration , the proliferationof cells supplemented with AA or LA was significantly higher than that of CLA. [3H]-thymidine uptake showed the same results. LA and AA increased [3H]-thymidine uptake more than CLA. The stimulatory effect of LA or AA was even more pronounced in the presence of IGF. Both cell number analysis and [3H]-thymidine incorporation revealed that IEC-6 cell proliferation was influenced differently by exogenous free fatty acids, in which AA or LA stimulated IEC-6 cell proliferation and CLA inhibited it. Tyorosine phosphorylation provides a key switch to regulate celluar acitivity in response to extracellular stimuli. At 20 μM and 10μM, AA with IGF-1 stimulated protein tyrosine phophorylation in IEC-6 cells, but LA's impact was less than that of AA. CLA and CLA with IGF-1 inhibited protein tyrosine phosphorylation in IEC-6 cells. These results suggest there is a possible correlation between cell proliferation and IGF receptor tyrosine knase activity driven by AA.

  • PDF

Biosynthesis of Conjugated Linoleic Acid and Its Incorporation into Ruminant's Products

  • Song, Man K.;Kennelly, John J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권2호
    • /
    • pp.306-314
    • /
    • 2003
  • Bio-hydrogenation of $C_{18}$-unsaturated fatty acids released from the hydrolysis of dietary lipids in the rumen, in general, occurs rapidly but the range of hydrogenation is quite large, depending on the degree of unsaturation of fatty acids, the configuration of unsaturated fatty acids, microbial type and the experimental condition. Conjugated linoleic acid (CLA) is incompletely hydrogenated products by rumen microorganisms in ruminant animals. It has been shown to have numerous potential benefits for human health and the richest dietary sources of CLA are bovine milk and milk products. The cis-9, trans-11 is the predominant CLA isomer in bovine products and other isomers can be formed with double bonds in positions 8/10, 10/12, or 11/13. The term CLA refers to this whole group of 18 carbon conjugated fatty acids. Alpha-linolenic acid goes through a similar bio-hydrogenation process producing trans-11 $C_{18:1}$ and $C_{18:0}$, but may not appear to produce CLA as an intermediate. Although the CLA has been mostly derived from the dietary $C_{18:2}$ alternative pathway may be existed due to the extreme microbial diversity in the reticulo-rumen. Regardless of the origin of CLA, manipulation of the bio-hydrogenation process remains the key to increasing CLA in milk and beef by dietary means, by increasing rumen production of CLA. Although the effect of oil supplementation on changes in fatty acid composition in milk seems to be clear its effect on beef is still controversial. Thus further studies are required to enrich the CLA in beef under various dietary and feeding conditions.

Anti-diabetic Effect of Fermented Milk Containing Conjugated Linoleic Acid on Type II Diabetes Mellitus

  • Song, Kibbeum;Song, In-Bong;Gu, Hye-Jung;Na, Ji-Young;Kim, Sokho;Yang, Hee-Sun;Lee, Sang-Cheon;Huh, Chang-Ki;Kwon, Jungkee
    • 한국축산식품학회지
    • /
    • 제36권2호
    • /
    • pp.170-177
    • /
    • 2016
  • Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of conjugated dienoic derivatives of linoleic acid. CLA has been reported to be able to reduce body fat. In this study, we investigated the antidiabetic effect of fermented milk (FM) containing CLA on type II diabetes db/db mice. Mice were treated with 0.2% low FM, 0.6% high FM, or Glimepiride (GLM) for 6 wk. Our results revealed that the body weight and the levels of fasting blood glucose, serum insulin, and leptin were significantly decreased in FM fed mice compared to db/db mice. Oral glucose tolerance and insulin tolerance were significantly ameliorated in FM fed mice compared to db/db mice. Consistent with these results, the concentrations of serum total cholesterol, triglycerides, and LDL cholesterol were also significantly decreased in FM fed mice compared to db/db mice. However, the concentration of HDL cholesterol was significantly higher in FM fed mice compared to db/db mice. These results were similar to those of GLM, a commercial anti-diabetic drug. Therefore, our results suggest that FM has anti-diabetic effect as a functional food to treat type II diabetes mellitus.