• Title/Summary/Keyword: Conjugated Linoleic

Search Result 359, Processing Time 0.023 seconds

The Time Course Effects of Conjugated Linoleic Acids on Body Weight, Adipose Depots and Lipid Profiles in the Male ICR Mice Fed Different Fat Sources

  • Hwang, Yun-Hee;Kang, Keum-Jee
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.205-211
    • /
    • 2005
  • This study examined the time course effects of conjugated linoleic acid (CLA) on the body weight, adipose depots and lipid profiles of ICR male mice using two different sources of fats in the diet Ninety eight mice weighing 25 to 30 g were divided into four groups: beef tallow (BT) and fish oil (FO), beef tallow with CLA supplementation (BTC), and fish oil with CLA supplementation (FOC) group. Eight to nine mice in each group were fed with the experimental diets for 1, 2 or 4 weeks, respectively. All mice were fed experimental diets containing $12\%$ of total dietary fat (w/w) with or without $0.5\%$ CLA (w/w). CLA supplementation did not affect the body weight The weight of epididymal and visceral fats were significantly lower in BTC compared to those in BT groups during the periods examined (p<0.05), whereas they were significantly lower in FOC than those in FO only at 4 weeks (p<0.05). The levels of triglycerides in the plasma were significantly decreased in the BTC group than in BT group throughout the experimental periods (p<0.05). But, FOC was only effective at 4 weeks as compared to FO. The levels of total cholesterol and HDL-C were significantly increased in the BTC than in BT during the entire period (p<0.05), whereas there were no difference between FO and FOC on the levelsof total cholesterol and HDL-C. The levels of free fatty acids (FFA) were significantly decreased in BTC than in BT at 1 and 4weeks and in FOC only at 4 weeks as compared to FO (p<0.05). Taken these results together, CLA was more effective in the beef tallow diet in lowering the epididymal and visceral fat weights and triglyceride level rather than fish oil diet with CLA. Furthermore, the effect became clearer at 4 weeks than at one week of the experiment.

Pelleting in Associated with Sodium Monensin Increases the Conjugated Linoleic Acids Concentration in the Milk of Dairy Cows Fed Canola Seeds

  • De Marchi, Francilaine Eloise;Romero, Jakeline Vieira;Damasceno, Julio Cesar;Grande, Paula Adriana;Zeoula, Lucia Maria;dos Santos, Geraldo Tadeu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1095-1104
    • /
    • 2015
  • To evaluate the effects of the pelleting and the addition of sodium monensin on production, the chemical and lipid composition of milk and butter physical characteristics, 4 Holstein dairy cows (135 days of lactation) with an average milk production of 14.7 kg/d, were supplemented with a concentrate containing ground canola seeds. The cows were assigned to a $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement of treatments: i) ground maize, soybean meal, mineral and vitamin supplements, and ground canola seeds (CG); ii) CG concentrate with 31.5 mg of monensin added per kg of dry matter (DM); iii) CG pelleted concentrate; iv) CG concentrate with monensin addition pelleted. There was no difference in milk production and composition. The addition of monensin increased milk concentration of polyunsaturated fatty acids (PUFA), the PUFA/saturated fatty acids (SFA) ratio, and omega 6. The pelleting increased the concentration of monounsaturated fatty acids, the PUFA/SFA ratio, and the omega 6/omega 3 ratio, but decreased the concentration of SFA. The association between pelleting and the addition of monensin increased the concentration of conjugated linoleic acids by 46.9%. The physical characteristics of butter were not affected by the evaluated diets. We concluded that the concentrate with 31.5 mg of monensin added per kg DM basis combined with the pelleting improves the lipid composition of milk from Holstein cows that are on pasture and supplemented with ground canola seeds, without changing the production, milk composition, and spreadability of butter.

Differential Action of trans-10, cis-12 Conjugated Linoleic Acid on Adipocyte Differentiation of Ovine and 3T3-L1 Preadipocytes

  • Iga, T.;Satoh, T.;Yamamoto, S.;Fukui, K.;Song, S.H.;Choi, K.C.;Roh, S.G.;Sasaki, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1566-1573
    • /
    • 2009
  • Trans-10, cis-12 conjugated linoleic acid (CLA) has been reported to inhibit the adipocyte differentiation of preadipocytes in non-ruminant animals (mice, rat, and human). However, the effects of trans-10, cis-12 CLA have not been clear in ruminants. The objective of this study was to investigate the effects of trans-10, cis-12 CLA on adipocyte differentiation of ovine preadipocytes. Differentiation of these preadipocytes was facilitated by treatment with trans-10, cis-12 CLA. Trans-10, cis-12 CLA increased the number and size of oil red O-stainable lipid drops as well as the levels of GPDH activity. PPAR-$\gamma{2}$ and adipophilin mRNA, adipogenic marker genes, were increased by treatment with trans-10, cis-12 CLA. This result was different from that observed with 3T3-L1 preadipocytes, a clonal cell line derived from rodents. Furthermore, trans-10, cis-12 CLA alone induced the adipocyte differentiation of ovine preadipocytes in differentiation-induction medium without troglitazone. These results suggest that CLA is an inducer and regulator in adipocyte differentiation of ovine preadipocytes, with species differences between ovine and rodent preadipocytes.

Effect of Conjugated Linoleic Acid on Intestinal and Hepatic Antioxidant Enzyme Activity and Lipid Peroxidation in Broiler Chickens

  • Ko, Y.H.;Yang, H.Y.;Jang, I.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.8
    • /
    • pp.1162-1167
    • /
    • 2004
  • The present study was designed to define whether dietary conjugated linoleic acid (CLA) could affect antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and glutathione S transferase (GST), and the level of malondialdehyde (MDA), a marker of lipid peroxidation, in the small intestine and liver from broiler chickens. A total of twenty-four 3 wk-old male broiler chickens were assigned to three dietary treatments (1.5% corn oil, 0.75% corn oil plus 0.75% CLA, and 1.5% CLA, isocalorically), and fed a grower-finisher diet from 22 to 35 days. In the small intestinal mucosae, the specific activities of SOD, GSH-Px, CAT, and GST, and the level of MDA were not substantially influenced by dietary CLA. In the liver, the specific activities of SOD, GSH-Px, and GST, and the level of MDA were also unaffected by dietary CLA at the level of either 0.75% or 1.5% compared with corn oil at the level of 1.5%. However, the broiler chickens fed the diet containing 1.5% CLA resulted in a significant increase in peroxisomal CAT activity and a marked decrease in total lipid and non-esterified fatty acids (NEFA) from liver tissues compared with those fed the diet containing 1.5% corn oil. In conclusion, ability of CLA to increase hepatic CAT activity suggest that dietary CLA may affect, at least in part, antioxidant defense system as well as lipid metabolism in the liver of broiler chickens.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Fatty Acid Profiles and Stearoyl-CoA Desaturase Gene Expression in Longissimus dorsi Muscle of Growing Lambs Influenced by Addition of Tea Saponins and Soybean Oil

  • Mao, H.L.;Wang, J.K.;Lin, J.;Liu, J.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.648-652
    • /
    • 2012
  • This study was conducted to determine the effects of dietary addition of tea saponins (TS) and soybean oil (SO) on fatty acid profile and gene expression of stearoyl-CoA desaturase (SCD) in longissimus dorsi (LD) muscle of growing lambs. Thirty-two Huzhou lambs were assigned to four dietary treatments in a $2{\times}2$ factorial arrangement with main effects of TS (0 or 3 g/d) and SO (0 or 30 g/kg of diet DM). The diet without additives was considered as NTNS (no TS or SO). After a feeding trial for 60 d, four lambs of each treatment were slaughtered to collect the samples of LD muscle. Percentage of trans-11 vaccenic acid was enhanced (p<0.05) in muscle of lambs fed TS and SO. The proportion of total conjugated linoleic acid (CLA) was increased (p<0.05) by SO, but decreased (p<0.05) by TS in LD muscle. The percentage of total saturated fatty acids in muscle was decreased (p<0.05) by addition of TS and SO, while addition of SO increased (p<0.05) the percentage of total polyunsaturated fatty acids. The ratio of cis-9, trans-11 CLA to tran-11 vaccenic acid was decreased (p<0.05) by TS, but increased (p<0.05) by SO. The same effects were observed in SCD mRNA expression. From these results it is indicated that including TS and SO in the diet of growing lambs affect the fatty acid profiles of LD muscle and that the proportion of cis-9, trans-11 CLA in the muscle influenced by TS and SO may be related to the SCD gene expression.

Effect of Structured Lipids Containing CLA on Hepatic Antioxidant Enzyme Activity in Rats Fed a Normal Diet

  • Kim, Hye-Jin;Lee, Ki-Taek;Lee, Mi-Kyung;Jeon, Seon-Min;Park, Myung-Sook
    • Nutritional Sciences
    • /
    • v.7 no.3
    • /
    • pp.138-143
    • /
    • 2004
  • Conjugated linoleic acid (CLA) has been shown to have a range of biological activities, including anti-carcinogenic, anti-atherosclerotic, anti-adipogenic and anti-diabetogenic effects. Recent reports also showed that CLA has free radical scavenging capacity, which may have health benefits for human beings. The current study was performed to investigate the effect of structured lipid (SL)-containing CLA on plasma lipids and hepatic antioxidant enzyme activity. Sprague-Dawley mts were fed 5% and 10% SL-containing normal diet for 6 wks and these groups were compared to rats fed 5% and 10% corn oil. In plasma lipids, total-cholesterol was not affected by fat source or dietary fat level while triglyceride level decreased significantly in groups fed 10% fat diet compared to the other groups. Plasma thiobarbituric acid reactive substances (TBARS) level decreased significantly in the S5 and S10 groups compared to the C5 and C10 groups, although hepatic TBARS level was not altered by fat source. On the other hand, in terms of hepatic antioxidant enzyme activity, superoxide dismutase activity increased in the S10 group, whereas catalase activity decreased in the S10 group. Glutathione peroxidase activity decreased significantly in the SL groups compared to the C5 group. Glutathione reductase activity increased and glucose-6-phosphate dehydrogenase activity decreased in the C10 group compared to the C5 and C5 groups. In conclusion, the free radical scavenging activity of CLA seemed to suppress oxidative stress, which reduced lipid peroxidation resulting in lower hepatic antioxidant enzyme activity.

Effect of Concentrate Level on the Formation of Conjugated Linoleic Acid and Trans-octadecenoic Acid by Ruminal Bacteria when Incubated with Oilseeds In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.687-694
    • /
    • 2002
  • An in vitro study was conducted to examine the effect of addition level of concentrate on fermentation characteristics and long-chain unsaturated fatty acids composition, especially conjugated linoleic acid (CLA) and trans-octadecenoic acid (t-FA) by mixed ruminal bacteria when incubated with linseed or rapeseed. Four levels (0.83, 1.25, 1.67 and 2.08%, w/v) of concentrate and ground oilseeds (linseed or rapeseed; 0.83%, w/v) were added to mixed solution of strained rumen fluid with artificial saliva (1:1, v/v) in the glass jar with a glass lid equipped with stirrer, and was incubated anaerobically for 24 h at $39^{\circ}C$. Addition level of concentrate slightly reflect on pH and ammonia concentration of the culture solution at the various incubation times when incubated with both linseed and rapeseed. Total VFA concentration slightly increased with incubation times and concentrate levels for incubations with oilseeds. While CLA composition had a clearly increasing trend with incubation time when incubated with linseed, percent CLA was relatively stable when incubated with rapeseed. Percent CLA, however, had a clearly decreasing trend with concentrate level throughout incubation times with significances at 3 h incubations when incubated with linseed (p<0.038) and rapeseed (p<0.0009). The differences in compositions of t-FA were relatively small among concentrate levels for both incubations with linseed and rapeseed. The ratios of t-FA to CLA were lower for linseed with increased proportion of CLA than for rapeseed.

Effect of ruminal administration of soy sauce oil on rumen fermentation, milk production and blood parameters in dairy cows

  • Konno, Daiji;Takahashi, Masanobu;Osaka, Ikuo;Orihashi, Takenori;Sakai, Kiyotaka;Sera, Kenji;Obara, Yoshiaki;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1779-1786
    • /
    • 2020
  • Objective: To evaluate soy sauce oil (a by-product of making whole soybean soy sauce) as a new dietary lipid source, a large amount of soy sauce oil was administered into the rumen of dairy cows. Methods: Four Holstein dairy cows fitted with rumen cannulae were used in a 56-day experiment. Ruminal administration of soy sauce oil (1 kg/d) was carried out for 42 days from day 8 to day 49 to monitor nutritional, physiological and production responses. Results: Dry matter intake and milk yield were not affected by soy sauce oil administration, whereas 4% fat-corrected milk yield and the percentage of milk fat decreased. Although ruminal concentration of total volatile fatty acids (VFA) and the proportion of individual VFA were partially affected by administration of soy sauce oil, values were within normal ranges, showing no apparent inhibition in rumen fermentation. Administration of soy sauce oil decreased the proportions of milk fatty acids with a carbon chain length of less than 18, and increased the proportions of stearic, oleic, vaccenic and conjugated linoleic acids. Conjugated linoleic acid content in milk became 5.9 to 8.8 times higher with soy sauce oil administration. Blood serum concentrations of non-esterified fatty acid, 3-hydroxybutyric acid, total cholesterol, free cholesterol, esterified cholesterol, triglyceride and phospholipid increased with administration of soy sauce oil, suggesting a higher energy status of the experimental cows. Conclusion: The results suggest that soy sauce oil could be a useful supplement to potentially improve milk functionality without adverse effects on ruminal fermentation and animal health. More detailed analysis is necessary to optimize the supplementation level of this new lipid source in feeding trials.

Anti-obesity Effect of Monascus pilosus Mycelial Extract in High Fat Diet-induced Obese Rats

  • Lee, Sang-Il;Kim, Jae-Won;Lee, Ye-Kyung;Yang, Seung-Hwan;Lee, In-Ae;Suh, Joo-Won;Kim, Soon-Dong
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.197-205
    • /
    • 2011
  • This study was carried out to investigate the dietary effects of Monascus pilosus mycelial extract on obesity in high-fat with cholesterol-induced obese rat models. It was observed that M. pilosus mycelial extract contains $25.85{\pm}1.98mg%$ of total monacolin K without citrinin by highperformance liquid chromatography (HPLC). The rats were randomly divided into 2 groups; normal control and a high-fat with cholesterol diet group. The high-fat with cholesterol diet group was fed a 5L79 diet with an added 15% lard and 1% cholesterol supplemented diet for 3 weeks for induction of obesity. After induction, obesity was confirmed by checking obesity indexes, the animals were divided into 4 groups (n=5); first, the normal control (NC), and then taken from the obese model of rats, a high-fat with cholesterol diet obesity control group (HF), 0.5% M. pilosus mycelial extract supplemented high-fat with cholesterol diet group (MPMs), 2% conjugated linoleic acid supplemented high-fat with cholesterol diet group (CLA) for 7 weeks. Body weight gains, obesity indexes, and body fat contents in the experimental groups (MPMs and CLA) were decreased compared with HF group. Feed Efficiency Ratio (FER) in MPMs was significantly lower than that of HF without change of feed intake. These results suggested that the anti-obesity effects of the M. pilosus mycelial extracts (MPMs) could prevent obesity induced by high-fat with cholesterol diet possibly via inhibition of lipid absorption.