• Title/Summary/Keyword: Conjugate gradient

Search Result 252, Processing Time 0.033 seconds

Domain Decomposition Method for Elasto-Plastic Problem (탄소성문제 적용을 위한 영역분할법)

  • Bae, Byung-Kyu;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3384-3390
    • /
    • 2011
  • This paper describes a domain decomposition method of parallel finite element analysis for elasto-plastic structural problems. As a parallel numeral algorithm for the finite element analysis, the authors have utilized the domain decomposition method combined with an iterative solver such as the conjugate gradient method. Here the domain decomposition method algorithm was applied directly to elasto-plastic problem. The present system was successfully applied to three-dimensional elasto-plastic structural problems.

An Incompressible Flow Computation by a Hierarchical Iterative and a Modified Residual Method (계층적 반복과 수정 잔여치법에 의한 비압축성 유동 계산)

  • Kim J. W.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.57-65
    • /
    • 2004
  • The incompressible Navier-Stokes equations in two dimensions are stabilized by a modified residual method, and then discretized by hierarchical elements. The stabilization is necessary to escape from the Ladyzhenskaya-Babuska-Brezzi(LBB) constraint and hence to achieve an equal order formulation. To expedite a standard iterative method such as the conjugate gradient squared(CGS) method, a preconditioning technique called the Hierarchical Iterative Procedure(HIP) has been applied. In this paper, we increased the order of interpolation within an element up to cubic. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far The numerical results by the present HIP for the lid driven cavity flow and others showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

Assessment of Numerical Optimization Algorithms in Design of Low-Noise Axial-Flow Fan (축류송풍기의 저소음 설계에서 수치최적화기법들의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1335-1342
    • /
    • 2000
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations are used as governing equations, and standard k- ${\varepsilon}$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Two variables concerning sweep angle distribution are selected as the design variables. Performance of the final fan designed by the optimization was tested experimentally.

Parallel Processing of 3D Rigid-Plastic FEM on a Cluster System (클러스터 시스템에서 3차원 강소성 유한요소법의 병렬처리)

  • Choi Young;Seo Yongwie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.122-129
    • /
    • 2005
  • On the cluster system, the parallel code of rigid-plastic FEM has been developed. The cluster system, Simforge, has 15 processors and the total memory is 4.5GBytes. In the developed parallel code, the distributed data of the column-wise partitioned stiffness are stored as the compressed row storage and the diagonal preconditioned conjugate gradient solver is applied. The analysis of block upsetting is performed with the parallel code on Simforge cluster system. In this paper, the analysis results are compared and discussed.

Warm-Start of Interior Point Methods for Multicommodity Network Flow Problem (다수상품 유통문제를 위한 내부점 방법에서의 Warm-Start)

  • 임성묵;이상욱;박순달
    • Korean Management Science Review
    • /
    • v.21 no.1
    • /
    • pp.77-86
    • /
    • 2004
  • In this paper, we present a methodology for solving the multicommodity network flow problems using interior point methods. In our method, the minimum cost network flow problem extracted from the given multicommodity network flow problem is solved by primal-dual barrier method in which normal equations are solved partially using preconditioned conjugate gradient method. Based on the solution of the minimum cost network flow problem, a warm-start point is obtained from which Castro's specialized interior point method for multicommodity network flow problem starts. In the computational experiments, the effectiveness of our methodology is shown.

A two-level parallel algorithm for material nonlinearity problems

  • Lee, Jeeho;Kim, Min Seok
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.405-416
    • /
    • 2011
  • An efficient two-level domain decomposition parallel algorithm is suggested to solve large-DOF structural problems with nonlinear material models generating unsymmetric tangent matrices, such as a group of plastic-damage material models. The parallel version of the stabilized bi-conjugate gradient method is developed to solve unsymmetric coarse problems iteratively. In the present approach the coarse DOF system is solved parallelly on each processor rather than the whole system equation to minimize the data communication between processors, which is appropriate to maintain the computing performance on a non-supercomputer level cluster system. The performance test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF nonlinear structural problems on a cluster system.

Cause Analysis and Removal of Boundary Artifacts in Image Deconvolution

  • Lee, Ji-Yeon;Lee, Nam-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.838-848
    • /
    • 2014
  • In this paper, we conducted a cause analysis on boundary artifacts in image deconvolution. Results of the cause analysis show that boundary artifacts are caused not only by a misuse of boundary conditions but also by no use of the normalized backprojection. Results also showed that the correct use of boundary conditions does not necessarily remove boundary artifacts. Based on these observations, we suggest not to use any specific boundary conditions and to use the normalized backprojector for boundary artifact-free image deconvolution.

Optimal design of an electro-pneumatic automatic transfer system

  • Um, Taijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.71-75
    • /
    • 1994
  • This paper presents a method of optimal design of an automatic transfer system which is controlled by the electro-pneumatic servo scheme. The electro-pneumatic automatic transfer system can move parts to desired points or displace defective parts. The dynamic performance of the system can be examined by observing the behavior of the output. The output of the servo control system is the motion of the cylinder, pneumatic actuator. The dynamic performance of the cylinder is governed by the parameters of the components of the entire system. The optimal design can be accomplished by selecting of the parameters such that the desired dynamic performance of the cylinder is obtained. The optimal set of parameters might be obtained through the repeated simulations. Repeated simulations, however, is not effective to determine the optimal set of parameters since the set of parameters is large. This paper presents modeling, application of an optimization method, and the numerical results. The optimization algorithm utilizes the concept of the conjugate gradient method. The results show that the suggested optimization scheme can render faster convergence of iteration compared to other method based on an algebraic optimization method and can reduce the design efforts.

  • PDF

Analysis of Electromagnetic Scattering Phenomena in Frequency Dependent Grounding Systems (주파수 의존 접지계의 전자파 스캐터링 현상의 해석)

  • Kim, Wang;Yim, Han-Suck
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.616-623
    • /
    • 1990
  • This paper includes the analysis and formulation of a new model for studying scattering from wire meshes that is more efficient and simpler to apply than the previous methods. In the new method, the conjugate gradient method is employed to improve each previous iterative and the fast Fourier transform (FFT) technique is utilized. A numerical computation of mesh scattering algorithm has been carried out in the Spectral Domain. A study on the electromagnetic properties such as reflection coefficients, induced currents and aperture fields has been presented and compared with data calculated by other methods to support the validity of the algorithm.

  • PDF

Optimal Design of a Permanent Magnetic Actuator for Vacuum Circuit Breaker using FEM

  • Yoo Yong-Min;Kim Dae-Kyong;Kwon Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.92-97
    • /
    • 2006
  • This paper presents the characteristic analysis and the optimal design of a permanent magnetic actuator (PMA) for a vacuum circuit breaker (VCB) using a two-dimensional finite element analysis. The purpose of this research about a PMA is to minimize the breaking time and the volume of the permanent magnet within the limits of the holding force and maximum current in the coil. The conjugate gradient method is used as an optimization algorithm. The node moving technique is iteratively implemented until the design variables of the PMA are optimized. In this paper, the optimal design of a PMA is accomplished to improve the conventional design methods.