• Title/Summary/Keyword: Conifer and Broadleaf

Search Result 9, Processing Time 0.022 seconds

Study on Forest Vegetation Classification with Remote Sensing

  • Yuan, Jinguo;Long, Limin
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.250-255
    • /
    • 2002
  • This paper describes the study methods of identifying forest vegetation types, based on this study, forest vegetation classification method based on vegetation index is proposed. According to reflectance data of vegetation canopy and soil line equation NIR=1.506R+0.0076 in Jingyuetan, Changchun, China, many vegetation index are calculated and analyzed. The relationships between vegetation index and vegetation types are that PVI identifies broadleaf forest and conifer forest the most easily, the next is TSAVI and MSAVI, but their calculation is complex. RVI values of different conifer trees vary obviously, so RVI can classify conifer trees. In a word, combination of PVI and RVI is evaluated to classify different vegetation types.

  • PDF

A Study of Establishment Ratio of Native Tree Transplant (자생수목 이식 성공률에 관한 연구)

  • Lee, Sang-Cheol;Jo, Bu-Yeon;Choi, Song-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.2
    • /
    • pp.23-29
    • /
    • 2015
  • To fulfill the need for reuse indigenous tree to mitigate the elimination of nature forests due to road construction, one representative method for this reuse is to transplant them and re-establish in similar conditions. In order to investigate the transplant and establishment of indigenous tree, a correlation and regression analysis was conducted by species and tree size. Data were collected for 6 years(2008~2013) in 7 construction sites in cooperation with the Korea Expressway Corporation. Regarding the transplanted indigenous trees status, the success rate of transplant was 15,519(69%) of 22,521. The tree most transplanted was Pinus densiflora(15,562), followed by Quercus spp.(6,156), Prunus sargentii(235), and P. thunbergii(154). P. densiflora and P. thunbergii belong to the conifer group while Quercus spp., Prunus sargentii belong to the broadleaf group. As a result of a contrast test, the conifer group had a significantly lower success rate of transplant than the broadleaf group. In the relation of root collar diameter and success rate of transplant, there was the tendency that the larger the root collar diameter, the lower the success rate of transplant. This study demonstrated that there is a strong negative correlation between the two factors(r=-0.730, p>0.000). The predicted regression equation of the success rate of transplant was Y= -0.811X+88.627(X: root collar diameter, Y: success rate of transplant) and the $R^2$ value for the linear equation was 0.532.

Classification of Warm Temperate Vegetation Using Satellite Data and Management System (위성영상을 이용한 난대림 식생 분류와 관리 시스템)

  • 조성민;오구균
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.231-235
    • /
    • 2004
  • Landsat satellite images were analyzed to study vegetation change patterns of warm-temperate forests from 1991 to 2002 in Wando. For this purpose, Landsat TM satellite image of 1991 and Landsat ETM image of 2002 were used for vegetation classification using ENVI image processing software. Four different forest types were set as a classification criteria; evergreen broadleaf, evergreen conifer, deciduous broadleaf, and others. Unsupervised classification method was applied to classily forest types. Although it was impossible to draw exact forest types in rocky areas because of differences in data detection time and rough resolution of image, 2002 data revealed that total 2,027ha of evergreen broadleaf forests were growing in Wando. Evergreen broadleaves and evergreen conifers increased in total areas compared to 11 years ago, but there was sharp decrease in deciduous broadleaves. GIS-based management system for warm-temperate forest was done using Arc/Info. Geographic and attribute database of Wando such as vegetation, soils, topography, land owners were built with Arc/Info and ArcView. Graphic user interface which manages and queries necessary data was developed using Avenue.

A study on the correlation between non-point source pollutants from the forest of Juam basin and algae bloom in the Juam lake. (주암호유역 산림기원 비점오염원물질과 주암호에 서식하는 조류번식간의 상관성 규명)

  • Kim, Nam-Jong;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.39-48
    • /
    • 2006
  • In Juam basin, the ratio of non-point pollution source among pollutant loading of basin was significantly high, since the utilization level of land was high. In addition, the most pollutants were not treated and flowed out. In this study, the correlation between non-point source pollutants from the forest area and increasing algae was investigated. 1. Chl-a concentration flowed out to runoff from forest area and stream water was low as $0.1{\sim}20.3{\mu}g/{\ell}$ and $0.1{\sim}9.3{\mu}g/{\ell}$, respectively, and chl-a concentration ($0.1{\sim}28.5{\mu}g/{\ell}$) of branch stream was higher $5{\sim}7$ times than that of runoff from forest area. 2. In correlation between runoff from forest area and Juam lake water, annual chl-a concentration of area front Juam dam was higher twice than forest area. 3. In runoff from forest area within Juam basin, flagellate, green, diatom and blue algae occupied $33.0{\sim}41.7%$, $22.2{\sim}30.8%$, $17.3{\sim}22.5%$ and $13.7{\sim}17.6%$, respectively. 4. In runoff from forest area, both green and diatom algae were maintained constantly irrespectively of season, and flagellate algae dominated since August. 5. In characteristics by forest tree types, four types algae were inhabited in mixed forest, and flagellate algae were higher in conifer and broadleaf forest than in other area. And green algae in herbaceous forest were higher than other area.

Forest Change Detection Service Based on Artificial Intelligence Learning Data (인공지능 학습용 데이터 기반의 산림변화탐지 서비스)

  • Chung, Hankun;Kim, Jong-in;Ko, Sun Young;Chai, Seunggi;Shin, Youngtae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.347-354
    • /
    • 2022
  • Since the era of the 4th industrial revolution has been ripe, the use of artificial intelligence(AI) based on massive data is beginning to be actively applied in various fields. However, as the process of analyzing forest species is carried out manually, many errors are occurring. Therefore, in this paper, about 60,000 pieces of AI learning data were automatically analyzed for pine, larch, conifer, and broadleaf trees of aerial photographs and pseudo images in the metropolitan area, and an AI model was developed to distinguish tree species. Through this, it is expected to increase in work efficiency by using the tree species division image as basic data when producing forest change detection and forest field topics.

The Gradient Variation of Thermal Environments on the Park Woodland Edge in Summer - A Study of Hadongsongrim and Hamyangsangrim - (여름철 공원 수림지 가장자리의 온열환경 기울기 변화 - 하동송림과 함양상림을 대상으로 -)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.6
    • /
    • pp.73-85
    • /
    • 2015
  • This study investigated the extent and magnitude of the woodland edge effects on users' thermal environments according to distance from woodland border. A series of experiments to measure air temperature, relative humidity, wind velocity, MRT and UTCI were conducted over six days between July 31 and August 5, 2015, which corresponded with extremely hot weather, at the south-facing edge of Hadongsongrim(pure Pinus densiflora stands, tree age: $100{\pm}33yr$, tree height: $12.8{\pm}2.7m$, canopy closure: 75%, N $35^{\circ}03^{\prime}34.7^{{\prime}{\prime}}$, E $127^{\circ}44^{\prime}43.3^{{\prime}{\prime}}$, elevation 7~10m) and east-facing edge of Hamyangsangrim (Quercus serrata-Carpinus tschonoskii community, tree age: 102~125yr/58~123yr, tree height: tree layer $18.6{\pm}2.3m/subtree$ layer $5.9{\pm}3.2m/shrub$ layer $0.5{\pm}0.5m$, herbaceous layer coverage ratio 60%, canopy closure: 96%, N $35^{\circ}31^{\prime}28.1^{{\prime}{\prime}}$, E $127^{\circ}43^{\prime}09.8^{{\prime}{\prime}}$, elevation 170~180m) in rural villages of Hadong and Hamyang, Korea. The minus result value of depth means woodland's outside. The depth of edge influence(DEI) on the maximum air temperature, minimum relative humidity and wind speed at maximum air temperature time during the daytime(10:00~17:00) were detected to be $12.7{\pm}4.9$, $15.8{\pm}9.8$ and $23.8{\pm}26.2m$, respectively, in the mature evergreen conifer woodland of Hadongsongrim. These were detected to be $3.7{\pm}2.2$, $4.9{\pm}4.4$ and $2.6{\pm}7.8m$, respectively, in the deciduous broadleaf woodland of Hamyansangrim. The DEI on the maximum 10 minutes average MRT, UTCI from the three-dimensional environment absorbed by the human-biometeorological reference person during the daytime(10:00~17:00) were detected to be $7.1{\pm}1.7$ and $4.3{\pm}4.6m$, respectively, in the relatively sparse woodland of Hadongsongrim. These were detected to be $5.8{\pm}4.9$ and $3.5{\pm}4.1m$, respectively, in the dense and closed woodland of Hadongsongrim. Edge effects on the thermal environments of air temperature, relative humidity, wind speed, MRT and UTCI in the sparse woodland of Hadongsongrim were less pronounced than those recorded in densed and closed woodland of Hamyansangrim. The gradient variation was less steep for maximum 10 minutes average UTCI with at least $4.3{\pm}4.6m$(Hadongsongrim) and $3.5{\pm}4.1m$(Hamyansangrim) being required to stabilize the UTCI at mature woodlands. Therefore it is suggested that the woodlands buffer widths based on the UTCI values should be 3.5~7.6 m(Hamyansangrim) and 4.3~8.9(Hadongsongrim) m on each side of mature woodlands for users' thermal comfort environments. The woodland edge structure should be multi-layered canopies and closed edge for the buffer effect of woodland edge on woodland users' thermal comfort.

The Late Quaternary Pollen Analysis of Gokgyo River Basin in Asan-City, Korea - Focused on Vegetation and Climate Environment between the Last Glacial Maximum and the Late Glacial - (충남 아산 곡교천 유역의 제4기 후기 화분분석 - 최종빙기 최성기~만빙기 식생 및 기후환경에 주목하여 -)

  • PARK, Ji-Hoon;KIM, Sung-Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • The pollen analysis was performed targeting the valley plain alluvium of Jangjae-ri, Asan area in order to clarify the climate and vegetation environment of the Last glacial maximum and the Late glacial in terms of Gokgyo River Watershed In Asan-City, Korea. The sample collection point gets included in the current deciduous broadleaf forest zone (south cool temperate zone). The results are as follows. (1) The vegetation environment of about 19,300-14,100yrB.P. at the investigation area is mainly classified into YJ-I period and YJ-II period while YJ-Ia period is classified once again into YJ-Ia period and YJ-Ib period. YJ-Ia period (19,300-17,500yrB.P.) is correlated with the Last Glacial Maximum while the vegetation at the time has relatively a little wide distribution area of grassland compared to the forest and the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest. YJ-Ib period (15,400-14,750yrB.P.) is correlated with the Late glacial (or the Last Glacial Maximum) and the distribution area of grassland became wider compared to the forest. While the forest vegetation of this time period is the mixed conifer and deciduous broad-leaved forest, a difference exists in terms of the dominant tree species. YJ-II period (about 14,650-14,100yrB.P.) is correlated with the Last glacial while the distribution area of grassland became even wider than the forest compared to the YJ-Ib in case of the vegetation at the time and the forest vegetation of this time period is the coniferous forest. (2) Both YJ-I period and YJ-II period were relatively cold and dry compared the End of Late Glacial (about 12,000-10,000yrB.P.)~Early Holocene (10,000-8,500yrB.P.), Also, YJ-II period was relatively colder than the YJ-I period and the YJ-Ib period was relatively more humid than the YJ-Ia period.

Landscape Analysis of the Hallasan National Park in a Jeju Island Biosphere Reserve: Fragmentation Pattern (제주 생물권보전지역 내 한라산국립공원의 경관분석 : 단편화 현상)

  • Kang, Hye-Soon;Kim, Hyun-Jung;Chang, Eun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.309-319
    • /
    • 2008
  • Roads are an indicator of anthropogenic activity causing ecosystem disturbances and often lead to habitat fragmentation, habitat loss, and habitat isolation. The Hallasan National Park(153.4$km^2$) on Jeju Island being distinguished for its unique geology, topography, and biota has also been designated as a core area of UNESCO Man and the Biosphere(MAB) Reserve. Although the high conservation value of this park has contributed to a rapid growth of tourists and road construction, landscape changes due to roads have not been examined yet. We used GIS systems to examine the fragmentation pattern caused by roads, in relation to its zonation, elevation, and vegetation. When a buffer was applied to roads(112m width for paved roads and 60m width for both legal and illegal trails), the park consisted of 100 fragments. The ten fragments generated after applying buffer to only paved roads and legal trails ranged from $0.002km^2$ to $38.2km^2$ with a mean of $14.2km^2$, and about 7% of both nature conservation zone and nature environment zone of the park were edge. Fragments in both east and west ends of the park and around the summit exhibited relatively high shape indices with means of 5.19(for 100 fragments) and 7.22(for 10 fragments). All five legal trails are connected to the pit crater of the mountain and vegetation changed from broadleaf forests and conifer forests to grasslands with elevation, consequently resulting in dramatic fragment size reduction in grasslands at high elevation, in particular above 1,400m, where endemic and alpine plants are abundant. These results show that in Hallasan National Park the risks of habitat deterioration and habitat loss due to fragmentation may be more severe in the nature conservation zone dominated by Baengnokdam than in the nature environment zone. Therefore, current road networks of the park appear to fall short of the goal of the national park for ecosystem conservation and protection. Considering that the entire Hallasan National Park also serves as a MAB core area, conservation efforts should focus, first of all, on park rezoning and road management to mitigate habitat fragmentation.

Origin and Storage of Large Woody Debris in a Third-order Mountain Stream Network, Gangwon-do, Korea (강원도 산지계류 내 유목의 기원과 현존량)

  • Kim, Suk Woo;Chun, Kun Woo;Seo, Jung Il;Lim, Young Hyup;Nam, Sooyoun;Jang, Su Jin;Kim, Yong Suk;Lee, Jae Uk
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.249-258
    • /
    • 2020
  • This study aims to provide reference material for effective forest management techniques at the catchment scale, based on the field investigation of large woody debris (LWD) in 11 streams within a third-order forest catchment in Gangwon Province, Korea. To achieve this aim, we analyzed the morphological features of LWD pieces, and the storage and distribution status of LWD by stream order throughout the entire investigation. As a result, a total of 1,207 individual pieces of LWD were categorized into three types as follows: (ⅰ) 1,142 pieces (95%) as only trunk and 65 pieces (5%) as a trunk with root wad, (ⅱ) 1,015 pieces (84%) as non-thinned and 192 pieces (16%) as the thinned, and (ⅲ) 1,050 pieces (87%) as conifer and 157 pieces (13%) as broadleaf. Additionally, in-stream LWD loads (㎥/ha) decreased with increasing stream order, yielding 105.4, 71.3, and 35.6 for first-, second-, and third-order streams, respectively. On the other hand, the ratio of LWD jams to the total LWD volume increased with increasing stream order, yielding 11%, 43%, and 49% for first-, second-, and third-order streams, respectively. Finally, a comparison of the in-stream LWD load with previous studies in several countries around the world indicated that in-stream LWD load was positively correlated with forest stand age even though the climate, topography, forest soil type, forest composition, stand growth rate, disturbance regime, and forest management practices were different. These results could contribute to understanding the significance of LWD as a by-product of forest ecosystems and an indicator of riparian forest disturbance. Based on this, we conclude that advanced forest management techniques, including treatment of thinning slash and stand density control of riparian forest by site location (hillslope and riparian zone, or stream order), should be established in the future, taking the forest ecosystem and the aquatic environment from headwater streams to low land rivers into consideration.