• Title/Summary/Keyword: Conical dental implant-abutment connection

Search Result 16, Processing Time 0.024 seconds

A Study of mechanical properties of oxide layer removed Co-Cr-Mo abutments

  • Ryu, Jae-ho;Huh, Jung-Bo;Ro, Jung-Hoon;Yun, Mi-Jung;Jeong, Chang-Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.11
    • /
    • pp.804-816
    • /
    • 2015
  • PURPOSE: The aim of this study was to evaluate the influence of the oxide layer removal process in the Co-Cr-Mo (CCM) abutment after casting procedure on the prosthesis settlement and screw stability. MATERIALS AND METHODS: CCM abutments of four different interface conditions (CCM-M; machined, CCM-O; oxide layer formed, CCM-B; blasted, CCM-P; polished after blasted) and gold abutment (Gold-C; Cast with type III Gold alloy) were used. The initial settling values of abutments were evaluated according to the difference of implant-abutment length when the tightening torques were applied at 5 Ncm and 30 Ncm, and the settling values of abutments caused by loading were evaluated according to the difference of implant-abutment length before and after loading with 250 N, 100000 cycle. The loss ratios of removal torque for abutment screws were evaluated according to the difference in value of removal torques under 30 Ncm tightening torque applied before and after cyclic loading. RESULTS: The CCM-P and CCM-B group showed a higher initial settling value compared with the Gold-C group (P<.05), while the Gold-C group showed the highest settling values caused by loading (P<.05) and no significant differences were observed for between CCM groups (P>.05). The loss ratio of removal torque values for the CCM-B, CCM-P groups did not differ significantly from that of the Gold-C group (P>.05). CONCLUSION: Even though the oxide layer was removed by different methods, CCM abutment with internal conical connection structure showed lower abutment settling and similar screw loosening after cyclic loading compared with gold abutment.

Narrow-diameter implants with conical connection for restoring the posterior edentulous region

  • Woo, In-Hee;Kim, Ju-Won;Kang, So-Young;Kim, Young-Hee;Yang, Byoung-Eun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.31.1-31.7
    • /
    • 2016
  • Background: The objective of this retrospective study was to show results from platform-switched narrow-diameter implants in the posterior edentulous region, which we followed up for more than 1 year after functional loading. Methods: Ninety-eight narrow implants were inserted into 66 patients. After healing, fixed implant-supported prostheses were delivered to the patients, and Periotest and radiographic examinations were performed. After the first year of loading, the implant outcome was again evaluated clinically and radiographically using the Periotest analysis. Crestal bone loss and Periotest values (PTVs) were used to evaluate the effect of surgery, prosthesis, implant, and a host-related factor. A general linear model was used to statistically detect variables statistically associated with crestal bone loss and Periotest value. Results: We followed up on the implants over 1 to 4 years after loading; their survival rate was 100 %, and pronounced differences from PTVs were noted among jaw location, bone quality, and loading period. No difference was detected in bone loss among the variables studied. Bone loss after functional loading was $0.14{\pm}0.39mm$. The stability value from the Periotest was $-3.29{\pm}0.50$. Conclusions: Within the limitations of this study, judicious use of platform-switched narrow implants with a conical connection must be considered an alternative for wide-diameter implants to restore a posterior edentulous region.

The non-linear FEM analysis of different connection lengths of internal connection abutment (내측 연결형 임플란트 지대주의 체결부 길이 변화에 따른 비선형 유한요소법적 응력분석)

  • Lee, Yong-Sang;Kang, Kyoung-Tak;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.110-119
    • /
    • 2016
  • Purpose: This study is aimed to assess changes of stress distribution dependent on different connection lengths and placement of the fixture top relative to the ridge crest. Materials and methods: The internal-conical connection implant which has a hexagonal anti-rotation index was used for FEM analysis on stress distribution in accordance with connection length of fixture-abutment. Different connection lengths of 2.5 mm, 3.5 mm, and 4.5 mm were designed respectively with the top of the fixture flush with residual ridge crest level, or 2 mm above. Therefore, a total of 6 models were made for the FEM analysis. The load was 170 N and 30-degree tilted. Results: In all cases, the maximum von Mises stress was located adjacent to the top portion of the fixture and ridge crest in the bone. The longer the connection length was, the lower the maximum von Mises stress was in the fixture, abutment, screw and bone. The reduction rate of the maximum von Mises stress depending on increased connection length was greater in the case of the fixture top at 2 mm above the ridge crest versus flush with the ridge crest. Conclusion: It was found that the longer the connection length, the lower the maximum von Mises stress appears. Furthermore, it will help prevent mechanical or biological complications of implants.

Three-Dimensional Finite Element Analysis of Internal Connection Implant System (Gsii$^{(R)}$) According to Three Different Abutments and Prosthetic Design (국산 내부연결형 임플란트시스템(GS II$^{(R)}$)에서 지대주 연결방식에 따른 응력분석에 관한 연구)

  • Jang, Mi-Ra;Kwak, Ju-Hee;Kim, Myung-Rae;Park, Eun-Jin;Park, Ji-Marn;Kim, Sun-Jong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.179-195
    • /
    • 2010
  • In the internal connection system, the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. The purpose of this study was to assess the loading distributing characteristics of three different abutments for GS II$^{(R)}$ implant fixture(Osstem, Korea) under vertical and inclined loading using finite element analysis. Three finite element models were designed according to three abutments; 2-piece Transfer$^{TM}$ abutment made of pure titanium(GST), 2-piece GoldCast$^{TM}$ abutment made of gold alloy(GSG), 3-piece Convertible$^{TM}$ abutment with external connection(GSC). This study simulated loads of 100N in a vertical direction on the central pit(load 1), on the buccal cusp tip(load 2) and $30^{\circ}$ inward inclined direction on the central pit(load 3), and on the buccal cusp tip(load 4). The following results were obtained. 1. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture and lower stress was taken at the cancellous bone. 2. When off-axis loading was applied, high stress concentration observed in cervical area. 3. GSG showed even stress distribution in crown, abutment and fixture. GST showed high stress concentration in fixture and abutment screw. GSC showed high stress concentration in fixture and abutment. 4. Maximum von Mises stress in the surrounding bone had no difference among three abutment type. In GS II$^{(R)}$ conical implant system, different stress distribution pattern was showed according to the abutment type and the stress-induced pattern at the supporting bone according to the abutment type had no difference among them.

Influence of bearing surface angle of abutment screw on mechanical stability of joint in the conical seal design implant system (내부 원추형 연결형태 임플란트에서 지대주 나사머리의 좌면각도가 연결부 기계적 안정성에 미치는 영향)

  • Kim, Joo-Hyeun;Huh, Jung-Bo;Yun, Mi-Jung;Kang, Eun-Sook;Heo, Jae-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 2014
  • This study is to evaluate how different bearing surface angles of abutment screw affect the mechanical stability of the joint in the conical seal design implant system. Materials and Methods: Internal connection type regular implants, two-piece cemented type abutments and tungsten carbide/carbon-coated titanium alloy abutment screws were selected. Titanium alloy screws with conical ($45^{\circ}$) and flat ($90^{\circ}$) head designs which fit on to abutment were fabricated. The abutments were tightened to implants with 30 Ncm by digital torque gauge. The loading was applied once to the central axis of abutment. The mean axial displacement was measured using micrometer before and after the tightening and loading (n = 5). The abutment was tightened to implants with 30 Ncm and T-shape stainless steel crown was cemented. Then the change in the amount of reverse-torque was measured after the repeated loading to the central axis, and the place 5 mm away from the central axis. Compressive bending and fatigue strength were measured at the place 5 mm away from the central axis (n = 5). Results: Both groups showed the largest axial displacement when abutment screw tightening and total displacement was greater in the flat head group compared to conical head group (P < 0.05). However, there were no significant differences in reverse torque value, compressive bending and fatigue strength (P > 0.05). Conclusion: Within the limitations of this study, the abutment screw head design had no effect on two groups regarding the joint stability, however the conical head design affected the settlement of abutment resulting in the reduced total displacement.

Concept and application of implant connection systems: Part I. Placement and restoration of internal conical connection implant (임플란트 연결부의 개념과 적용: Part 1. 원추형 내부연결 임플란트의 식립과 보철)

  • Ko, Kyung-Ho;Kang, Hyeon-Goo;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.211-221
    • /
    • 2020
  • The typical biomechanical properties of an internal conical connection (ICC) are axial displacement and loss of preload. The axial displacement of an ICC without a vertical stop can cause the loss of preload and a lowered occlusion. The stress of an ICC is concentrated on the contact interface of the abutment and not on the screw, and during placement, it is important to choose a wider coronal wall thickness as much as possible. The ICC should also be placed below the level of the bone crest. During the restoration of an ICC, care should be taken to ensure an appropriate abutment shape and an accurate connection. To get the best clinical results, it is important to select its wall thickness and place it in the appropriate position to restore it adequately.