• Title/Summary/Keyword: Confocal laser microscope

Search Result 193, Processing Time 0.027 seconds

Quantification of Melanin Density at Epidermal Basal Layer by Using Confocal Scanning Laser Microscope (CSLM) (Confocal Scanning Laser Microscope (CSLM)을 이용한 피부 기저층 멜라닌 밀도의 정량화)

  • Kim, Dong Hyun;Lee, Sung Ho;Oh, Myoung Jin;Choi, Go Woon;Yang, Woo Chul;Park, Chang Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.259-268
    • /
    • 2014
  • Non-invasive technologies in skin research have enabled to use a live image of living skin without a biopsy or histologic processing of tissue. Confocal scanning laser microscope (CSLM) operated at a near-infrared wavelength of 830 nm allows visualization of inner structure of skin as a non-invasive manner. According to previous researches using CSLM, melanin cap and papillary ring were clearly observed in pigmented areas between stratum basale and papillary dermis. In this study, conversional analysis of CSLM digital images into numerical estimation using scanning probe image processor (SPIP) software was attempted for the first time. It is concluded that a quantification of CSLM images can pave way to expand the field of applications of CSLM.

THE EFFECT OF MULTIPLE APPLICATION ON MICROTENSILE BOND STRENGTH OF ALL-IN-ONE DENTIN ADHESIVE SYSTEMS (All-in-one adhesive의 다층적용이 미세인장결합강도에 미치는 영향)

  • Son, Sung-Ae;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.423-429
    • /
    • 2004
  • The purpose of this study was to evaluate the effect of multiple application of all-in-one dentin adhesive system on microtensile bond strength using confocal laser scanning microscope and microtensile bond strength test. Flat occlusal dentin surfaces were prepared using low-speed diamond saw. In group I, Scotchbond Multipurpose (SM) was applied by manufacturer's recommendation. In group II, after Adper Prompt L-Pop was applied for 15s and light cured for 10s. the second coat was re-applied and light-cured. In group III, after light-curing the second layer. the third coat was re-applied and light-cured. Specimens bonded with a resin-composite were sectioned into resin-dentin stick for measuring the adhesive layer thickness by confocal laser scanning microscope and evaluating micro-tensile bond strength. The adhesive layers of three-step dentin adhesive system. 3 coats of Adper Prompt L-Pop had significantly thicker than SM. 2 coats of Adper Prompt L-Pop (p < 0.05). However. there was no significant differences in bond strengths between SM and 3 coats of Adper Prompt L-Pop (p > 0.05). And SM. 3 coats of Adper Prompt L-Pop had significantly higher than 2 coats of Adper Prompt L-Pop in bond strengths (p < 0.05).

Mixing Efficiency Evaluation in Y-channel Micromixer Using LIF Confocal Microscope (LIF 공초점 현미경을 이용한 Y-채널 마이크로믹서의 혼합 효율 평가)

  • Kim, Kyoung-Mok;Shin, Yong-Su;Ahn, Yoo-Min;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.159-166
    • /
    • 2007
  • Mixing between two or more reagents is one of important processes in biochemical microfluidics. In efficient micromixer design, it is essential to analyze flow pattern and evaluate mixing efficiency with good precision. In this work, mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS) and those are bonded to glass plate through Plasma bonding. Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. For visualization of the flow pattern, dynamic image capturing is carried out using CAM scope. For the comparison with computer simulation, modified SIMPLE algorithm for incompressible flow equation is solved for the same geometry as in the experiment. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.

Precision measurement of a laser micro-processing surface using a hybrid type of AFM/SCM (하이브리드형 AFM/SCM을 이용한 레이저 미세 가공 표면 측정)

  • Kim, Jong-Bae;Kim, Kyeong-Ho;Bae, Han-Sung;Nam, Gi-Jung;Lee, Dae-Chul;Seo, Woon-Hak
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.123-127
    • /
    • 2006
  • Hybrid type microscope with a Scanning Confocal Microscope (SCM) and a shear-force Atomic Force Microscope (AFM) is suggested and preliminarily studied. A image of $120{\times}120{\mu}m^2$ is obtained within 1 second by SCM because scan speed of a X-axis and Y-axis are 1kHz and 1Hz, respectively. Shear-force AFM is able to correctly measure the hight and width of sample with a resolution 8nm. However, the scan speed is slow and it is difficult to distinguish a surface composed of different kinds of materials. We have carried out the measurement of total image of a sample by SCM and an exact analysis of each image by shear-force AFM.

  • PDF

Statistical Analysis of Fluorescence Correlation Spectroscopy of Ultra Low Concentration Molecules with a Confocal Microscope

  • Lee, Soon-Hyouk;Lim, Gyu-Chang;Kim, Soo-Yong;Kim, Eun-Kyung;Kim, Hak-Sung;Kim, Sok-Won
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.170-173
    • /
    • 2008
  • In this study, we simulated a statistical model of FCS(fluorescence correlation spectroscopy) based on a Poisson process to understand and explain observations of the experiment performed on molecules of ultra-low concentration by the home-built laser-scanning confocal microscope. The statistical model confirmed that the relative mean square amplitude of fluctuations is shown to be inversely proportional to the average number of molecules, even in the ultra-low concentration, if some conditions are satisfied. Signal-to-noise ratio and the variability of dwelling time under the confocal volume were found to be effective conditions for the experiment.

Auto-focusing laser direct writing system using confocal geometry (공초점 정렬을 이용한 자동초점보정 레이저 직접묘화 시스템)

  • Kim, Yong-Woo;Lee, Jin-Seok;Kim, Kyoung-Sik;Hahn, Jae-Won
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.123-128
    • /
    • 2006
  • We constructed a micro-patterning system that build patterns on a photoresist coated wafer using laser direct writing system. Confocal microscope system was adapted for real-time auto-focusing of the laser writing lens to generate lines of uniform width.

  • PDF

Clinical Microscopy: Performance, Maintenance and Laser Safety (임상에서의 현미경: 작동, 유지보수 및 레이저 안전)

  • Lee, Tae Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • A microscope is the fundamental research and diagnostic apparatus for clinical investigation of signaling transduction, morphological changes and physiological tracking of cells and intact tissues from patients in the biomedical laboratory science. Proper use, care and maintenance of microscope with comprehensive understanding in mechanism are fully requested for reliable image data and accurate interpretation for diagnosis in the clinical laboratory. The standard operating procedure (SOP) for light microscopes includes performance procedure, brief information of all mechanical parts of microscopes with systematic troubleshooting mechanism depending on the laboratory capacity. Maintenance program encompasses cleaning objective, ocular lenses and inner optics; replacement and calibration of light source; XY sample stage management; point spread function (PSF) measurement for confocal laser scanning microscope (CLSM); quality control (QC) program in fluorescent microscopy; and systematic troubleshooting. Laser safety is one of the concern for medical technologists engaged in CLSM laboratory. Laser safety guideline based on the laser classification and risk level, and advisory lab wear for CLSM users are also expatiated in this overview. Since acquired image data presents a wide range of information at the moment of acquisition, well-maintained microscopes with proper microscopic maintenance program are impulsive for its interpretation and diagnosis in the clinical laboratory.

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.